904 resultados para embodied energy analysis
Resumo:
Three new amphiphilic rare earth complexes with only two organic long chains Ln (MOP)(2)Cl (MOP=monooctadecyl phthalate, Ln=Eu, Tb, Gd) were synthesized and characterized by elemental analysis. The complexes (Eu, Tb) showed good luminescence property with long fluorescence lifetime, whereas the intensity and lifetime of Tb complex are greater than those of Eu complex, By measuring the triplet energy levels of ligand based on energy transfer mechanism, above phenomena have been well explained. The Langmuir films of the complexes on the air/water interface were also studied and the results show that all of them have good film-forming property.
Resumo:
The applications of new topological indices A(x1)-A(x3) suggested in our laboratory for the prediction of Gibbs energy values of phase transfer (water to nitrobenzene) of amine ions are described with satisfactory results. Multiple regression analysis and neural network were employed simultaneously in this study.
Resumo:
Correlation analysis of the standard Gibbs energy for a series of tetraalkylammonium ions, protonated substituted ethylenediamine derivatives and protonated aromatic amine derivatives using three new topological indices Ax1, Ax2 and Ax has been studied. T
Resumo:
This paper deals with the correction of mode II strain energy release rate, G(II), of composite laminates measured with the end-notched flexure (ENF) specimen. A derivation is given of the expressions for compliance and strain energy release rate, in whic
Resumo:
The Angular Overlap Model (AOM) is applied to the LaOX:Eu3+(X = Cl, Br, I) series involving sigma, pi, delta and phi effects based on the experimental energy levels. The calculations are made in two cases. (1) Consider oxygen and halogen having the same bond-length. (2) Consider the real structure. In both cases, the results show that for sigma-bonding parameters, the values of e(sigma) decrease with increasing charge number of halogen, i.e. Cl- > Br- > I-, this indicates that the bonding ability also decreases with this order. The absolute values of each parameter are much larger than zero-therefore they all must be included in a practical analysis. In the second case, the values of the e(pi) parameter are negative, which means a ''back-bonding'' is formed, and this is profitable for the formation of sigma-bonding, usually referred to as ''synergic effect''.
Resumo:
The angular overlap model (AOM) is applied to 4f6 electron systems. The crystal field parameters are interpreted and covalency between 4f electrons and ligands is investigated based on the experimental energy levels. For Eu3+:Ln2O2S (Ln = Lu, Y, Gd, La) crystal series, we adopt two computational schemes. First of all, we assume that the distances to all ligands are equal, and then the distances to all ligands are divided into two groups, namely, oxygens as one group, sulfurs as the other. Of course, much information about covalency will be obtained from the latter case. Obviously, our results show that the covalency of Ln-O bonding is stronger than that of Ln-S bonding in line with much shorter bondlength for the former than that for the latter. The two schemes yield the same results, that is, for sigma and pi bonding, ligands are strong donors as well as sigma, pi effects are dominant over delta, phi effects.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.
Resumo:
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
Polysiphonia urceolata R-phycoerythrin and Porphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native gamma subunits were isolated from the reaction mixture. The process of degradation of phycoerythrin with proteinaseK showed that the gamma subunit is located in the central cavity of (alpha beta)(6) hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated gamma subunit showed that the absorption peaks of phycoerythrobilins on alpha or beta subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated gamma subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated gamma subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.
Resumo:
Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d(N)/d(S) ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.
Resumo:
We used fifteen years (1993-2007) of altimetric data, combined from different missions (ERS-1/2, TOPEX/Poseidon, Jason-1, and Envisat), to analyze the variability of the eddy kinetic energy (EKE) in the South China Sea (SCS). We found that the EKE ranged from 64 cm(2)/s(2) to 1 390 cm(2)/s(2) with a mean value of 314 cm(2)/s(2). The highest EKE center was observed to the east of Vietnam (with a mean value of 509 cm(2)/s(2)) and the second highest EKE region was located to the southwest of Taiwan Island (with a mean value of 319 cm(2)/s(2)). We also found that the EKE structure is the consequence of the superposition of different variability components. First, interannual variability is important in the SCS. Spectral analysis of the EKE interannual signal (IA-EKE) shows that the main periodicities of the IA-EKE to the east of Vietnam, to the southwest of Taiwan Island, and in the SCS are 3.75, 1.87, and 3.75 years, respectively. It is to the south of Taiwan Island that the IA-EKE signal has the most obvious impact on EKE variability. In addition, the IA-EKE exhibit different trends in different regions. An obvious positive trend is observed along the east coast of Vietnam, while a negative trend is found to the southwest of Taiwan Island and in the east basin of Vietnam. Correlation analysis shows that the IA-EKE has an obvious negative correlation with the SSTA in Nio3 (5A degrees S-5A degrees N, 90A degrees W-150A degrees W). El Nio-Southern Oscillation (ENSO) affects the IA-EKE variability in the SCS through an atmospheric bridge-wind stress curl over the SCS. Second, the seasonal cycle is the most obvious timescale affecting EKE variability. The locations of the most remarkable EKE seasonal variabilities in the SCS are to the east of Vietnam, to the southwest of Taiwan, and to the west of Philippines. To the east of Vietnam, the seasonal cycle is the dominant mechanism controlling EKE variability, which is attributed primarily to the annual cycle there of wind stress curl. In this area, the maximum EKE is observed in autumn. To the southwest of Taiwan Island, the EKE is enlarged by the stronger SCS circulation, which is caused by the intrusion branch from the Kuroshio in winter. Finally, intra-annual and mesoscale variability, although less important than the former, cannot be neglected. The most obvious intra-annual and mesoscale variability, which may be the result of baroclinic instability of the background flow, are observed to the southwest of Taiwan Island. Sporadic events can have an important effect on EKE variability.
Resumo:
Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.
Resumo:
This dissertation, an exercise in practical theology, consists of a critical conversation between the evangelistic practice of Campus Crusade for Christ in two American university contexts, Bryan Stone's ecclesiologically grounded theology of evangelism, and William Abraham's eschatologically grounded theology of evangelism. It seeks to provide these evangelizing communities several strategic proposals for a more ecclesiologically and eschatologically grounded practice of evangelism within a university context. The current literature on evangelism is long on evangelistic strategy and activity, but short on theological analysis and reflection. This study focuses on concrete practices, but is grounded in a thick description of two particular contexts (derived from qualitative research methods) and a theological analysis of the ecclesiological and eschatological beliefs embedded within their evangelistic activities. The dissertation provides an historical overview of important figures, ideas, and events that helped mold the practice of evangelism inherited by the two ministries of this study, beginning with the famous Haystack Revival on Williams College in 1806. Both ministries, Campus Crusade for Christ at Bowling Green State University (Ohio) and at Washington State University, inherited an evangelistic practice sorely infected with many of the classic distortions that both Abraham and Stone attempt to correct. Qualitative research methods detail the direction that Campus Crusade for Christ at Bowling Green State University (Ohio) and Washington State University have taken the practice of evangelism they inherited. Applying the analytical categories that emerge from a detailed summary of Stone and Abraham to qualitative data of these two ministries reveals several ways evangelism has morphed in a manner sympathetic to Stone's insistence that the central logic of evangelism is the embodied witness of the church. The results of this analysis reveal the subversive and pervasive influence of modernity on these evangelizing communities—an influence that warrants several corrective strategic proposals including: 1) re-situating evangelism within a reading of the biblical narrative that emphasizes the present, social, public, and realized nature of the gospel of the kingdom of God rather than simply its future, personal, private, and unrealized dimensions; 2) clarifying the nature of the evangelizing communities and their relationship to the church; and 3) emphasizing the virtues that characterize a new evangelistic exemplar who is incarnational, intentional, humble, and courageous.