Isolation, characterization and electron microscopic single particle analysis of the NADH : ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus


Autoria(s): Peng, GH; Fritzsch, G; Zickermann, V; Schaagger, H; Mentele, R; Lottspeich, F; Bostina, M; Radermacher, M; Huber, R; Stetter, KO; Michel, H
Data(s)

18/03/2003

Resumo

The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.

The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.

Identificador

http://ir.qdio.ac.cn/handle/337002/1660

http://www.irgrid.ac.cn/handle/1471x/166046

Idioma(s)

英语

Fonte

.Isolation, characterization and electron microscopic single particle analysis of the NADH : ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus,BIOCHEMISTRY,2003,42(10):3032-3039

Palavras-Chave #Biochemistry & Molecular Biology #ESCHERICHIA-COLI #MITOCHONDRIAL NADH #BACTERIAL #PROTEIN #PURIFICATION #TRANSLOCATION #DEHYDROGENASE #FLEXIBILITY #INHIBITORS #STABILITY
Tipo

期刊论文