969 resultados para cournot equilibrium
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.
Resumo:
We comment on the nature of the ordering transition of a model of equilibrium polydisperse rigid rods on the square lattice, which is reported by Lopez et al. to exhibit random percolation criticality in the canonical ensemble, in sharp contrast to (i) our results of Ising criticality for the same model in the grand canonical ensemble [Phys. Rev. E 82, 061117 (2010)] and (ii) the absence of exponent(s) renormalization for constrained systems with logarithmic specific-heat anomalies predicted on very general grounds by Fisher [Phys. Rev. 176, 257 (1968)].
Resumo:
In this paper, we study the order of moves in a mixed international duopoly for differentiated goods, where firms choose whether to set prices sequentially or simultaneously. We discuss the desirable role of the public firm by comparing welfare among three games. We find that, in the three possible roles, the domestic public firm put a lower price, and then produces more than the foreign private firm.
Resumo:
In this paper, we study an international market model in which the home government imposes a tariff on the imported goods. The model has two stages. In the first stage, the home government chooses an import tariff to maximize a function that cares about the home firm’s profit and the total revenue. Then, the firms engage in a Cournot or in a Stackelberg competition. We compare the results obtained in the three different ways of moving on the decision make of the firms.
Resumo:
In this paper, we study the effects of environmental and trade policies in an international mixed duopoly serving two markets, in which the public firm maximizes the sum of consumer surplus and its profit. We also analyse the effects of privatization. The model has two stages. In the first stage, governments choose environmental taxes and import tariffs, simultaneously. Then, the firms engage in a Cournot competition, choosing output levels for the domestic market and to export. We compare the results obtained in the three different ways of moving on the decision make of the firms.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientada por: Prof. Doutor Eduardo Manuel Lopes de Sá e Silva Coorientada por: Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira Esta dissertação inclui as críticas e sugestões feitas pelo júri.
Resumo:
This paper analyses the effects of tariffs on an international economy with a monopolistic sector with two firms, located in two countries, each one producing a homogeneous good for both home consumption and export to the other identical country. We consider a game among governments and firms. First, the government imposes a tariff on imports and then we consider the two types of moving: simultaneous (Cournot-type model) and sequential (Stackelberg-type model) decisions by the firms. We also compare the results obtained in each model.
Resumo:
In this paper, we study the effects of environmental and privatization in a mixed duopoly, in which the public firm aims to maximize the social welfare. The model has two stages. In the first stage, the government sets the environmental tax. Then, the firms engage in a Cournot competition, choosing output and pollution abatement levels.
Resumo:
O bacalhau (Gadus morhua) faz parte da dieta alimentar dos portugueses há vários séculos, sendo atualmente, um dos maiores consumidores deste peixe a nível mundial. Após o processo de salga, esta espécie possui características únicas como a consistência, cheiro, paladar e cor amarela. É precisamente devido à coloração do peixe que alguns produtores da Islândia, Noruega e Dinamarca requisitaram às autoridades da União Europeia (UE) a aprovação da utilização de polifosfatos no processo de salga húmida do bacalhau. Os polifosfatos são aditivos alimentares bastante usados no processamento do pescado pois previnem a oxidação dos lípidos e proteínas do músculo do bacalhau, evitando assim a indesejada mudança de cor do peixe. Apesar dos esforços da Associação dos Industriais do Bacalhau (AIB) e do governo português para a rejeição da proposta nórdica, tal não se verificou. Deste modo, no início do próximo ano já será possível a venda na UE de bacalhau com fosfatos. A quantificação do teor de fosfatos no bacalhau é geralmente efetuada por Espetrofotometria de absorção molecular no ultravioleta-visível (UV-Visível). Esta quantificação é baseada no método de determinação do fósforo total, através da hidrólise dos fosfatos a ortofosfatos com posterior medição da cor amarela, gerada pela reação destes com uma solução de molibdato-vanadato. O objetivo desta dissertação foi a validação de um método de análise para a quantificação dos polifosfatos no bacalhau. O método validado foi o descrito na norma NP 4495 para produtos de pesca e aquicultura. O desenvolvimento deste trabalho foi realizado em laboratório acreditado para águas e produtos alimentares (Equilibrium - Laboratório de Controlo de Qualidade e de Processos Lda, L0312). Foi ainda determinada a influência do teor de cloreto de sódio na quantificação dos polifosfatos e o teor de humidade, uma vez que este pode afetar o produto durante a sua comercialização. No processo de validação do método foram estudados diversos parâmetros, tais como a seletividade, linearidade, sensibilidade, limite de quantificação e precisão. Pela análise dos resultados obtidos conclui-se que o método para determinação de fosfatos no bacalhau se encontra validado, uma vez que satisfaz todas as especificações determinadas para cada parâmetro de validação avaliado.
Resumo:
The Portuguese northern forests are often and severely affected by wildfires during the summer season. These occurrences affect significant and rudely all ecosystems, namely soil, fauna and flora. Preventive actions such as prescribed burnings and clear-cut logging are frequently used and have showed a significant reduction of the natural wildfires occurrences. In Portugal, and due to some technical and operational conditions, prescribed burnings in forests are the most common preventive action used to reduce the existing fuel hazard. The overall impacts of this preventive action on Portuguese ecosystems are complex and not fully understood. This work reports to the study of a prescribed burning impact in soil chemical properties, namely pH, humidity and organic matter, by monitoring the soil self-recovery capacity. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, who was able to maintain itself intact from prescribed burnings from four years. The composed soil samples were collected from five plots at three different layers (0-3cm, 3-6cm and 6-18cm) 1 day before prescribed fire and after the prescribed fire. The results have shown that the dynamic equilibrium in soil was affected significantly.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.