929 resultados para carbon nanotubes
Resumo:
We introduce a new approach for fabricating hollow microneedles using vertically-aligned carbon nanotubes (VA-CNTs) for rapid transdermal drug delivery. Here, we discuss the fabrication of the microneedles emphasizing the overall simplicity and flexibility of the method to allow for potential industrial application. By capitalizing on the nanoporosity of the CNT bundles, uncured polymer can be wicked into the needles ultimately creating a high strength composite of aligned nanotubes and polymer. Flow through the microneedles as well as in vitro penetration of the microneedles into swine skin is demonstrated. Furthermore, we present a trade study comparing the difficulty and complexity of the fabrication process of our CNT-polymer microneedles with other standard microneedle fabrication approaches. Copyright © Materials Research Society 2013.
Resumo:
Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.
Resumo:
We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.
Resumo:
Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.
Resumo:
Naphthalocyanine-sensitized multi-walled carbon nanotube (NaPc-MWNT) composites have been synthesized through the pi-stacking between naphthalocyanine (NaPc) and carbon nanotubes. The resultant nanocomposites were characterized with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and by UV - vis absorption and photocurrent spectra. The long-range ordering was observed in the NaPc - MWNT composites by using a TEM. The enhancement in the absorption intensity and the broadening of the absorption wavelength observed in the composite films, which were due to the attachment of NaPc on the MWNT surface, is discussed based on the measured UV - vis absorption spectra. Furthermore, the photoconductivity of the poly( 3-hexylthiophene)(PAT6) - NaPc - MWNT composite film was found to increase remarkably in the visible region and broaden towards the red regions. These new phenomena were ascribed to the larger donor/acceptor (D/A) interface and the formation of a biconsecutive D/A network structure, as discussed in consideration of the photoinduced charge transfer between PAT6 and NaPc - MWNT.
Resumo:
We investigate the chirality dependence of physical properties of nanotubes which are wrapped by the planar hexagonal lattice including graphite and boron nitride sheet, and reveal its symmetry origin. The observables under consideration are of scalar, vector, and tensor types. These exact chirality dependences obtained are useful to verify the experimental and numerical results and propose accurate empirical formulas. Some important features of physical quantities can also be extracted by considering the symmetry restrictions without complicated calculations.
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.
Resumo:
The size controllable Gd2O3:Eu3+ luminescence nanotubes were successfully prepared using a simple method by coating gadolinium compounds on the carbon nanotubes and then firing the carbon nanotubes. The morphology of the obtained Gd2O3:Eu3+ nanotubes was determined by transmission electron microscopy (TEM). It was found that the obtained nanotubes have the outer diameters of similar to 100 nm, the inner diameters of similar to 50 nm, and the lengths of several tens of microns. The sizes of Gd2O3:Eu3+ nanotubes can be easily controlled by changing the reaction times and the concentration of reactants.
Resumo:
Rectangular AgIn(WO4)(2) nanotubes with a diameter range of 80 to 120 nm and length up to 2 mu m have been synthesized by a hydrothermal method. These nanotubes exhibit interesting white light emissions when using 320 nm as the excitation wavelength. A photocatalytic reaction for water decomposition to evolve K, was performed under UV irradiation, and the rate of H, evolution is nearly seven times that of the sample prepared by a solid-state reaction, which shows much higher photocatalytic activities compared with their bulk counterparts.
Resumo:
By controlling the surface effects during droplet evaporation of imogolite solutions, imogolite nanotubes were dispersed individually and directly observed by transmission electron microscopy (TEM), and the structure evolution of imogolite nanotubes in the synthetic process was investigated. It was found that the number of imogolite nanotubes continuously increased with time in the whole reaction. The average length grew slowly over time after a remarkable increase in the initial 24 h, and the length distribution experienced a similar variation with the polydispersity index always below 2. No appreciable changes in tube diameters were detected under TEM observation.
Resumo:
A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).
Resumo:
All messenger-RNA (mRNA) molecules in eukaryotic cells have a polyadenylic acid [poly (rA)] tail at the 3'-end and human poly (rA) polymerase (PAP) has been considered as a tumor-specific target. A ligand that is capable of recognizing and binding to the poly(M) tail of mRNA might interfere with the full processing of mRNA by PAP and can be a potential therapeutic agent. We report here for the first time that single-walled carbon nanotubes (SWNTs) can cause single-stranded poly (M) to self-structure and form a duplex structure, which is studied by UV melting, atomic force microscopy, circular dichroism spectroscopy, and NMR spectrometry.
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
Gold nanoparticles stabilized by amino-terminated ionic liquid (Au-IL) have been in situ noncovalently deposited on poly(sodium 4-styrene-sulfonate) (PSS)-functionalized multiwalled carbon nanotubes (MWCNTs) to form a MWCNTs/PSS/Au-IL nanocomposite. PSS can interact with MWCNTs through hydrophobic interaction. Amino-terminated ionic liquid was applied to reduce aqueous HAuCl4, and the resulting gold nanoparticles were attached to the PSS-functionalized MWCNTs simultaneously. Most gold nanoparticles dispersed well on the functionalized MWCNTs. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy were used to confirm the composition and structure of the nanocomposites. The resulting MWCNTs/PSS/Au-IL composite exhibits good electrocatalysis toward oxygen and hydrogen peroxide reduction.