910 resultados para akt retoryczny


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human ether-a-go-go-related gene (hERG) encodes the voltage-gated K+ channel, hERG (Kv11.1). This channel passes the rapidly-activating delayed rectifier K+ current (IKr), which is important for cardiac repolarization. A reduction in IKr due to loss-of-function mutations or drug interactions causes long QT syndrome (LQTS), which can lead to cardiac arrhythmias and sudden cardiac death. The density of hERG channels in the plasma membrane is a key determinant of normal physiological function, and is balanced by trafficking to and from the cell surface. Many LQTS-associated hERG mutations result in a trafficking deficiency of otherwise functional channels. Thus, elucidating mechanisms of hERG regulation at the plasma membrane is useful for the prevention and treatment of LQTS. We previously demonstrated that M3 muscarinic receptor activation increases mature hERG expression through a Gq protein-dependent protein kinase C (PKC) pathway. In addition to conventional Gq protein-coupling, M3 receptors recruit β-arrestins upon agonist binding. Traditionally known for their role in receptor desensitization and internalization, β-arrestins also act as adaptor proteins to facilitate G protein-independent signaling. In the present work, I investigated the exclusive effect of β-arrestin signaling on hERG expression by utilizing an arrestin-biased M3 designer receptor (M3D-arr) exclusively activated by clozapine-N-oxide (CNO). By expressing M3D-arr in hERG-HEK cells and treating with CNO under various conditions, I found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited β-arrestin to the plasma membrane, and promoted the PI3K-dependent activation of Akt. I further found that the activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) and Rab11 to facilitate endosomal recycling of hERG channels to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\-)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/-) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/-) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/-) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/-) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

„Reformpädagogik", so die zentrale These der Abhandlung, ist nach ihrem Ursprung nicht zu verstehen, ohne den Akt der Kreation und Konstruktion zu berücksichtigen, in dem vor allem die NoHL-Schule aus einer Vielzahl von Erziehungsexperimenten die Einheit einer Bewegung stiftet und die Bewegung zugleich formiert und diszipliniert. Systematisch, d. h. nach ihrer Möglichkeit, Funktion und Leistung sowie in der Kontinuität der Rezeption läßt sich Reformpädagogik allerdings erst erklären, wenn man sie - gegen den Vorwurf des Antimodernismus - nicht nur historisch interpretiert, sondern als Form der reflexiven Modernisierung der Erziehung auch konzeptionell, als Leistung versteht. (DIPF/Orig.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adoptive immunotherapy and oncolytic virotherapy are two promising strategies for treating primary and metastatic malignant brain tumors. We demonstrate the ability of adoptively transferred tumor-specific T cells to rapidly mediate the clearance of established brain tumors in several mouse models. Similar to the clinical situation, tumor recurrences are frequent and result from immune editing of tumors. T cells can eliminate antigen-expressing tumor cells but are not effective against antigen loss variant (ALV) cancer cells that multiply and repopulate a tumor. We show that the level of tumor antigen present affects the success of adoptive T cell therapy. When high levels of antigen are present, tumor stromal cells such as microglia and macrophages present tumor peptide on their surface. As a result, T cells directly eliminate cancer cells and cross-presenting stromal cells and indirectly eliminate ALV cells. We were able to show the first direct evidence of tumor antigen cross-presentation by CD11b+ stromal cells in the brain using soluble, high-affinity T cell receptor monomers. Strategies that target brain tumor stroma or increase antigen shedding from tumor cells leading to increased crosspresentation by stromal cells may improve the clinical success of T cell adoptive therapies. We evaluated one potential strategy to complement adoptive T cell therapy by characterizing the oncolytic effects of myxoma virus (MYXV) in a syngeneic mouse brain tumor model of metastatic melanoma. MYXV is a rabbit poxvirus with strict species tropism for European rabbits. MYXV can also infect mouse and human cancer cell lines due to signaling defects in innate antiviral mechanisms and hyperphosphorylation of Akt. MYXV kills B16.SIY melanoma cells in vitro, and intratumoral injection of virus leads to robust, selective and transient infection of the tumor. We observed that virus treatment recruits innate immune cells iii to the tumor, induces TNFα and IFNβ production in the brain, and results in limited oncolytic effects in vivo. To overcome this, we evaluated the safety and efficacy of co-administering 2C T cells, MYXV, and neutralizing antibodies against IFNβ. Mice that received the triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Based on these findings, methods to enhance viral replication in the tumor and limit immune clearance of the virus will be pursued. We conclude that myxoma virus should be further explored as a vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Bien que l’hypoxie soit un puissant inducteur de l’angiogenèse, l’activation des facteurs de croissance est perturbée en hyperglycémie au niveau du pied et du cœur. Cette perturbation entraîne la perte de prolifération et de migration chez les cellules endothéliales, musculaires lisses vasculaires et péricytes empêchant la formation de nouveaux vaisseaux qui mènera à l’amputation des membres inférieurs chez les patients diabétiques. Une étude a démontré qu’une augmentation de la protéine tyrosine phosphatase Src homology-2 domain-containing phosphatase-1 (SHP-1) en condition hyperglycémique chez les péricytes entraînait l’inhibition de la signalisation du PDGF-BB, ce qui résultait en le développement d’une rétinopathie diabétique. Nous avons alors soulevé l’hypothèse que l’expression de SHP-1 dans les cellules musculaires lisses vasculaires affecte la prolifération et la migration cellulaire par l’inhibition de la signalisation de l’insuline et du PDGF-BB en condition diabétique. Nos expérimentations ont été effectuées principalement à l’aide d’une culture primaire de cellules musculaires lisses primaires provenant d’aortes bovines. Comparativement aux concentrations normales de glucose (NG : 5,6 mM), l’exposition à des concentrations élevées de glucose (HG : 25 mM) pendant 48 h a résulté en l’inhibition de la prolifération cellulaire par l’insuline et le PDGF-BB autant en normoxie (20% O2) qu’en hypoxie (24 dernières heures à 1% O2). Lors des essais de migration cellulaire, aucun effet de l’insuline n’a été observé alors que la migration par le PDGF-BB fut inhibée en HG autant en normoxie qu’en hypoxie. L’exposition en HG à mener à l’inhibition de la signalisation de la voie PI3K/Akt de l’insuline et du PDGF-BB en hypoxie. Aucune variation de l’expression de SHP-1 n’a été observée mais son activité phosphatase en hypoxie était fortement inhibée en NG contrairement en HG où on observait une augmentation de cette activité. Finalement, une association a été constatée entre SHP-1 et la sous-unité bêta du récepteur au PDGF. En conclusion, nous avons démontré que l’augmentation de l’activité phosphatase de SHP-1 en hypoxie cause l’inhibition des voies de l’insuline et du PDGF-BB réduisant les processus angiogéniques des cellules musculaires lisses vasculaires dans la maladie des artères périphériques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of the vascular endothelium is to maintain vascular homeostasis, by providing an anti-thrombotic, anti-inflammatory and vasodilatory interface between circulating blood and the vessel wall, meanwhile facilitating the selective passage of blood components such as signaling molecules and immune cells. Dysfunction of the vascular endothelium is implicated in a number of pathological states including atherosclerosis and hypertension, and is thought to precede atherogenesis by a number of years. Vascular endothelial growth factor A (VEGF) is a crucial mitogenic signaling molecule, not only essential for embryonic development, but also in the adult for regulating both physiological and pathological angiogenesis. Previous studies by our laboratory have demonstrated that VEGF-A activates AMP-activated protein kinase (AMPK), the downstream component of a signaling cascade important in the regulation of whole body and cellular energy status. Furthermore, studies in our laboratory have indicated that AMPK is essential for VEGF-A-stimulated vascular endothelial cell proliferation. AMPK activation typically stimulates anabolic processes and inhibits catabolic processes including cell proliferation, with the ultimate aim of redressing energy imbalance, and as such is an attractive therapeutic target for the treatment of obesity, metabolic syndromes, and type 2 diabetes. Metabolic diseases are associated with adverse cardiovascular outcomes and AMPK activation is reported to have beneficial effects on the vascular endothelium. The mechanism by which VEGF-A stimulates AMPK, and the functional consequences of VEGF-A-stimulated AMPK activation remain uncertain. The present study therefore aimed to identify the specific mechanism(s) by which VEGF-A regulates the activity of AMPK in endothelial cells, and how this might differ from the activation of AMPK by other agents. Furthermore, the role of AMPK in the pro-proliferative actions of VEGF-A was further examined. Human aortic and umbilical vein endothelial cells were therefore used as a model system to characterise the specific effect(s) of VEGF-A stimulation on AMPK activation. The present study reports that AMPK α1 containing AMPK complexes account for the vast majority of both basal and VEGF-A-stimulated AMPK activity. Furthermore, AMPK α1 is localized to the endoplasmic reticulum when sub-confluent, but translocated to the Golgi apparatus when cells are cultured to confluence. AMPK α2 appears to be associated with a structural cellular component, but neither α1 nor α2 complexes appear to translocate in response to VEGF-A stimulation. The present study confirms previous reports that when measured using the MTS cell proliferation assay, AMPK is required for VEGF-A-stimulated endothelial cell proliferation. However, parallel experiments measuring cell proliferation using the Real-Time Cell Analyzer xCELLigence system, do not agree with these previous reports, suggesting that AMPK may in fact be required for an aspect of mitochondrial metabolism which is enhanced by VEGF-A. Studies into the mitochondrial activity of endothelial cells have proved inconclusive at this time, but further studies into this are warranted. During previous studies in our laboratory, it was suggested that VEGF-A-stimulated AMPK activation may be mediated via the diacylglycerol (DAG)-sensitive transient receptor potential cation channel (TRPCs -3, -6 or -7) family of ion channels. The present study can neither confirm, nor exclude the expression of TRPCs in vascular endothelial cells, nor rule out their involvement in VEGF-A-stimulated AMPK activation; more specific investigative tools are required in order to characterise their involvement. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP)-stimulated Ca2+ release from acidic intracellular organelles is not required for AMPK activation by VEGF-A. Despite what is known about the mechanisms by which AMPK is activated, far less is known concerning the downregulation of AMPK activity, as observed in human and animal models of metabolic disease. Phosphorylation of AMPK α1 Ser485 (α2 Ser491) has recently been characterised as a mechanism by which the activity of AMPK is negatively regulated. We report here for the first time that VEGF-A stimulates AMPK α1 Ser485 phosphorylation independently of the previously reported AMPK α1 Ser485 kinases Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2). Furthermore, inhibition of protein kinase C (PKC), the activity of which is reported to be elevated in metabolic disease, attenuates VEGF-A- and phorbol 12-myristate 13-acetate (PMA)-stimulated AMPK α1 Ser485 phosphorylation, and increases basal AMPK activity. In contrast to this, PKC activation reduces AMPK activity in human vascular endothelial cells. Attempts to identify the PKC isoform responsible for inhibiting AMPK activity suggest that it is one (or more) of the Ca2+-regulated DAG-sensitive isoforms of PKC, however cross regulation of PKC isoform expression has limited the present study. Furthermore, AMPK α1 Ser485 phosphorylation was inversely correlated with human muscle insulin sensitivity. As such, enhanced AMPK α1 Ser485 phosphorylation, potentially mediated by increased PKC activation may help explain some of the reduced AMPK activity observed in metabolic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Studiów Edukacyjnych

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this thesis deals with the phenomenon of thermoelectricity. It involves the improvement of the thermoelectric properties of silicon using innovative nanostructures. My contribution was to help fabricate these thermoelectric devices, and is the focus of this part of the thesis.

The second part and primary focus of this thesis is the analysis of thin films using scanning probe techniques. These surface techniques include atomic force microscopy, electric force microscopy, Kelvin probe force microscopy, and scanning tunneling microscopy. The thin films studied are graphene and molybdenum disulfide, two remarkable materials that display unique two-dimensional qualities. These materials are shown to be useful in studying the properties of adsorbates trapped between them and the substrate on which they rest. Moreover, these adsorbed species are seen to affect the structural and electronic properties of the thin films themselves. Scanning probe analyses are particularly useful in elucidating the properties of these materials, as surface effects play a significant role in determining their characteristics.

The final part of this thesis is concerned with the study of Akt in live cells using protein capture agents previously developed by my colleagues. The activation and degradation of Akt is investigated using various biological assays, including Western blots, in vitro kinase assays, and cell viability assays. Finally, the usefulness of synthetic capture agents in perturbing protein pathways and as delivery agents is assessed and analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016