936 resultados para ZINC-OXIDE
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.
Resumo:
We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Electron microscopic investigations have been carried out on superconducting YBa2Cu3 O7−δ, NdBa2Cu3 O7−δ and related oxides. All these orthorhombic oxides exhibit twin domains. Based on high resolution electron microscopy, it is shown that there is no significant change in the structure across the twins. Oxides of the La2−x Sr x (Ba x )CuO4 system do not show twins, but exhibit other types of defects. Twins appear to be characteristic of only the orthorhombic 123 structures.
Resumo:
2,4-Lutidine-1-oxide (2,4-LutO) complexes of lanthanide perchlorates of the formulae Ln2(2,4-LutO)13(ClO4)6 (Ln = Pr and Nd) and Ln2(2,4-LutO)15 (ClO4)6 (Ln = La, Tb, Dy, Ho and Yb) have been prepared and characterised by chemical analysis, IR, NMR, conductance and electronic spectral data. Proton NMR data along with the IR data show that the ligand coordinates to the metal ion through the oxygen. Conductance data of the complexes in acetone and nitrobenzene indicate that the perchlorate is not coordinated to the metal ion.
Resumo:
This paper describes a theoretical model for the growth of titanium oxide by thermal oxidation of titanium. It is shown that this model can explain the formation of layers of different oxides of titanium and the changes in these layers with variations in the conditions of oxidation. Some experimental X-ray diffraction results which support the model are also given.
Resumo:
A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.
Resumo:
This paper reports the variations in impedance with frequency of metal‐oxide‐semiconductor (MOS) structures on polycrystalline silicon. The origin of these impedance‐frequency characteristics are qualitatively explained. These characteristics indicate that the MOS structure on polycrystalline silicon can be exploited to realize voltage controlled filters.
Resumo:
The potential of Bi2CuO4 as the first oxide system to show a linear-chain magnetic behaviour is examined. Electron diffraction studies do not resolve the previously reported ambiguity regarding its space group. The magnetic susceptibility data at high temperatures are best fitted to a uniform antiferromagnetic spin-1/2 Heisenberg chain. At low temperatures, however, neither the uniform nor the alternating Heisenberg antiferromagnetic model fits the data. Magnetic susceptibility data over the entire temperature range can be fitted if one assumes dimeric units with a nearly degenerate second singlet state close to the ground state, these states being separated from an excited triplet state by an energy gap. A simple heuristic model of a dimer that gives such an energy level spectrum is examined.
Resumo:
The titled reagent incorporates an oxygen-centred nucleophile and a basic moiety�in a suitably mutual orientation�in the same molecule. It oxidises various primary benzylic bromides to the corresponding aromatic aldehydes under relatively mild conditions (MeCN/rt�50°C/6�24 h) in high yields (83�97%), and is thus a useful alternative to the Kornblum procedure.
Resumo:
High-temperature superconductivity in oxides of the type(La, Ln)2?xBax(Sr)xCuO4, Y(Ln)Ba2Cu3O7??, La3?xBa3+xCu6O14, and related systems is discussed with emphasis on aspects related to experimental solid-state chemistry. All of these oxides possess perovskite-related structures. Oxygen-excess and La-deficient La2CuO4 also exhibit superconductivity in the 20�40 K just as La2?xBax(Srx)CuO4; these oxides are orthorhombic in the superconductivity phase. The crucial role of oxygen stoichiometry in the superconductivity ofYBa2Cu3O7?? (Tc = 95 ± 5K) is examined; this oxide remains orthorhombic up to ? ? 0.6 and becomes tetragonal and nonsuperconducting beyond this value of ?. Oxygen stoichiometry in this and related oxides has to be understood in terms of structure and disorder. The structure of La3?xBa3+xCu6O14 is related to that of YBa2Cu3O7, the orthorhombic structure manifesting itself when the population of O1 oxygens (along the Cusingle bondOsingle bondCu chains) is preponderant compared to that of O5 oxygens (along thea-axis); nearly equal populations of O1 and O5 sites give rise to the tetragonal structure. A transition from a high-Tc (95 K) superconductivity regime to a low-Tc (not, vert, similar60 K) regime occurs in YBa2Cu3O7?? accompanying a change in ?. There is no evidence for Cu3+ in these nominally mixed valent copper oxides. Instead, holes are present on oxygens giving rise to O? or O2?2 species, the concentration of these species increasing with the lowering of temperature. Certain interesting aspects of the superconducting oxides such as domain or twin boundaries, Raman spectra, microwave absorption, and anomalous high-temperature resistivity drops are presented along with the important material parameters. Preparative aspects of the superconducting oxides are briefly discussed. Phase transitions seem to occur atTc as well as at not, vert, similar240 K in YBa2Cu3O7.
Resumo:
In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets.
Resumo:
Nickel zinc ferrites have been very widely used in the high‐frequency applications. In our present study we have prepared Ni1−x Znx Fe2O4 (0≤x≤1) using novel hydrazinium metal hydrazinecarboxylate precursors. High densities (∼99%) have been obtained for all the ferrites sintered at relatively low temperatures, 1100 °C, in comparison with the conventional method (≥1200 °C). The variation of magnetic properties like magnetic moment, Curie temperature, and permeability with zinc concentration have been studied.