938 resultados para Taxonomy of chitinoclastic bacteria
Resumo:
Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted d13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from -20 to -35 per mil over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in d13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
Urinary tract infections (UTIs) are typically caused by bacteria that colonize different regions of the urinary tract, mainly the bladder and the kidney. Approximately 25% of women that suffer from UTIs experience a recurrent infection within 6 months of the initial bout, making UTIs a serious economic burden resulting in more than 10 million hospital visits and $3.5 billion in healthcare costs in the United States alone. Type-1 fimbriated Uropathogenic E. coli (UPEC) is the major causative agent of UTIs, accounting for almost 90 % of bacterial UTIs. The unique ability of UPEC to bind and invade the superficial bladder epithelium allows the bacteria to persist inside epithelial niches and survive antibiotic treatment. Persistent, intracellular UPEC are retained in the bladder epithelium for long periods, making them a source of recurrent UTIs. Hence, the ability of UPEC to persist in the bladder is a matter of major health and economic concern, making studies exploring the underlying mechanism of UPEC persistence highly relevant.
In my thesis, I will describe how intracellular Uropathogenic E.coli (UPEC) evade host defense mechanisms in the superficial bladder epithelium. I will also describe some of the unique traits of persistent UPEC and explore strategies to induce their clearance from the bladder. I have discovered that the UPEC virulence factor Alpha-hemolysin (HlyA) plays a key role in the survival and persistence of UPEC in the superficial bladder epithelium. In-vitro and in-vivo studies comparing intracellular survival of wild type (WT) and hemolysin deficient UPEC suggested that HlyA is vital for UPEC persistence in the superficial bladder epithelium. Further in-vitro studies revealed that hemolysin helped UPEC persist intracellularly by evading the bacterial expulsion actions of the bladder cells and remarkably, this virulence factor also helped bacteria avoid t degradation in lysosomes.
To elucidate the mechanistic basis for how hemolysin promotes UPEC persistence in the urothelium, we initially focused on how hemolysin facilitates the evasion of UPEC expulsion from bladder cells. We found that upon entry, UPEC were encased in “exocytic vesicles” but as a result of HlyA expression these bacteria escaped these vesicles and entered the cytosol. Consequently, these bacteria were able to avoid expulsion by the cellular export machinery.
Since bacteria found in the cytosol of host cells are typically recognized by the cellular autophagy pathway and transported to the lysosomes where they are degraded, we explored why this was not the case here. We observed that although cytosolic HlyA expressing UPEC were recognized and encased by the autophagy system and transported to lysosomes, the bacteria appeared to avoid degradation in these normally degradative compartments. A closer examination of the bacteria containing lysosomes revealed that they lacked V-ATPase. V-ATPase is a well-known proton pump essential for the acidification of mammalian intracellular degradative compartments, allowing for the proper functioning of degradative proteases. The absence of V-ATPase appeared to be due to hemolysin mediated alteration of the bladder cell F-actin network. From these studies, it is clear that UPEC hemolysin facilitates UPEC persistence in the superficial bladder epithelium by helping bacteria avoid expulsion by the exocytic machinery of the cell and at the same time enabling the bacteria avoid degradation when the bacteria are shuttled into the lysosomes.
Interestingly even though UPEC appear to avoid elimination from the bladder cell their ability to multiple in bladder cells seem limited.. Indeed, our in-vitro and in-vivo experiments reveal that UPEC survive in superficial bladder epithelium for extended periods of time without a significantly change in CFU numbers. Indeed, we observed these bacteria appeared quiescent in nature. This observation was supported by the observation that UPEC genetically unable to enter a quiescence phase exhibited limited ability to persist in bladder cells in vitro and in vivo, in the mouse bladder.
The studies elucidated in this thesis reveal how UPEC toxin, Alpha-hemolysin plays a significant role in promoting UPEC persistence via the modulation of the vesicular compartmentalization of UPEC at two different stages of the infection in the superficial bladder epithelium. These results highlight the importance of UPEC Alpha-hemolysin as an essential determinant of UPEC persistence in the urinary bladder.
Resumo:
Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.
Resumo:
This dissertation presents the first theoretical model for understanding narration and point of view in opera, examining repertoire from Richard Wagner to Benjamin Britten. Prior music scholarship on musical narratives and narrativity has drawn primarily on continental literary theory and philosophy of the 1960s to the middle of the 1980s. This study, by contrast, engages with current debates in the analytic branch of aesthetic philosophy. One reason why the concept of point of view has not been more extensively explored in opera studies is the widespread belief that operas are not narratives. This study questions key premises on which this assumption rests. In so doing, it presents a new definition of narrative. Arguably, a narrative is an utterance intended to communicate a story, where "story" is understood to involve the representation of a particular agent or agents exercising their agency. This study explores the role of narrators in opera, introducing the first taxonomy of explicit fictional operatic narrators. Through a close analysis of Britten and Myfanwy Piper's Owen Wingrave, it offers an explanation of music's power to orient spectators to the points of view of opera characters by providing audiences with access to characters' perceptual experiences and cognitive, affective, and psychological states. My analysis also helps account for how our subjective access to fictional characters may engender sympathy for them. The second half of the dissertation focuses on opera in performance. Current thinking in music scholarship predominantly holds that fidelity is an outmoded concern. I argue that performing a work-for-performance is a matter of intentionally modelling one's performance on the work-for-performance's features and achieving a moderate degree of fidelity or matching between the two. Finally, this study investigates how the creative decisions of the performers and director impact the point of view from which an opera is told.
Resumo:
Bifidobacteria constitute a specific group of commensal bacteria, typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support appreciable growth. Using a combination of transcriptomic and functional genomic approaches, a gene cluster, designated ats2, was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived carbohydrates which allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of this species' ability to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant and adult gut.
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.
Resumo:
Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (~40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.
Resumo:
Studies of Alexander Pope's poetry tend to examine only the footnotes to his Dunciads, if they examine his footnotes at all. This dissertation will address this deficit in our understanding of Pope's poetics through an examination of Pope's use of footnotes in support of his verse throughout his career. With Gerard Genette's taxonomy of footnotes as variously paratext and text and Hugh Kenner's idea of the technological space of the printed page as frameworks within which Pope's footnotes operate, this dissertation will show that – over the course of his career – Pope developed a poetics of annotation that deployed footnotes rhetorically as appeals to ethos and pathos that both built up Pope's own authorial ethos for his audience in the literary market place of early eighteenth-century London and for posterity and used that authorial ethos in support of his literary and political friends.
Systematic review of Late Jurassic sauropods from the Museu Geológico collections (Lisboa, Portugal)
Resumo:
The Museu Geológico collections house some of the first sauropod references of the Lusitanian Basin Upper Jurassic record, including the Lourinhasaurus alenquerensis and Lusotitan atalaiensis lectotypes, previously considered as new species of the Apatosaurus and Brachiosaurus genera, respectively. Several fragmentary specimens have been classical referred to those taxa, but the most part of these systematic attributions are not supported herein, excluding a caudal vertebra from Maceira (MG 8804) considered as cf. Lusotitan atalaiensis. From the material housed in the Museu Geológico were identified basal eusauropods (indeterminate eusauropods and turiasaurs) and neosauropods (indeterminate neosauropods, diplodods and camarasaurids and basal titanosauriforms). Middle caudal vertebrae with lateral fossae, ventral hollow border by pronounced ventrolateral crests and quadrangular cross-section suggest for the presence of diplodocine diplodocids in north area of the Lusitanian Basin Central Sector during the Late Jurassic. A humerus collected from Praia dos Frades (MG 4976) is attributed to cf. Duriatitan humerocristatus suggesting the presence of shared sauropod forms between the Portugal and United Kingdom during the Late Jurassic. Duriatitan is an indeterminate member of Eusauropoda and the discovery of new material in both territories is necessary to confirm this systematic approach. The studied material is in according with the previous recorded paleobiodiversity for the sauropod clade during the Portuguese Late Jurassic, which includes basal eusauropods (including turiasaurs), diplodocids and macronarians (including camarasaurids and basal titanosauriforms).
Resumo:
This text is a first that the author would develop later. It is illustrated with case studies and original terminology. It begins with a brief conceptual contribution on the difference in approach between the German and French geographical schools, and continues with a reflection on the historical and geographical relativity of the boundary. Subsequently, at its greatest extent, the article provides a taxonomy of states: amorphous states, in three cases, that of the "savage peoples" without boundaries, of black Africa; that of semi-civilized peoples of northwest Africa, and the particular case of European civilized nomads, called ―terranovas‖. Framed states, with borders undergoing processes of emergence or extension, especially the case of Yugoslavia. And, in addition, some references to stable boundaries of Albania and the Netherlands
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
The article presents a study of a CEFR B2-level reading subtest that is part of the Slovenian national secondary school leaving examination in English as a foreign language, and compares the test-taker actual performance (objective difficulty) with the test-taker and expert perceptions of item difficulty (subjective difficulty). The study also analyses the test-takers’ comments on item difficulty obtained from a while-reading questionnaire. The results are discussed in the framework of the existing research in the fields of (the assessment of) reading comprehension, and are addressed with regard to their implications for item-writing, FL teaching and curriculum development.