Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux.
Cobertura |
United States |
---|---|
Data(s) |
15/12/2015
|
Resumo |
Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms. |
Formato |
2107 - 2117 |
Identificador |
http://www.ncbi.nlm.nih.gov/pubmed/26673320 S2211-1247(15)01310-8 Cell Rep, 2015, 13 (10), pp. 2107 - 2117 http://hdl.handle.net/10161/12637 2211-1247 |
Idioma(s) |
ENG |
Relação |
Cell Rep 10.1016/j.celrep.2015.11.010 |
Palavras-Chave | #Animals #Animals, Genetically Modified #Calcium #Calcium Signaling #Chemotaxis #Microscopy, Fluorescence #Neutrophils #Rats #TRPV Cation Channels #Zebrafish |
Tipo |
Journal Article |