906 resultados para Solar refrigeration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is required. Modeling of solar cells by electro-optical numerical simulation is helpful to predict the performance of future generations devices exhibiting advanced light-trapping schemes and to provide new and more specific guidelines to industry. The approaches to optical simulation commonly adopted for c-Si solar cells may lead to inaccurate results in case of thin film and nano-stuctured solar cells. On the other hand, rigorous solvers of Maxwell equations are really cpu- and memory-intensive. Recently, in optical simulation of solar cells, the RCWA method has gained relevance, providing a good trade-off between accuracy and computational resources requirement. This thesis is a contribution to the numerical simulation of advanced silicon solar cells by means of a state-of-the-art numerical 2-D/3-D device simulator, that has been successfully applied to the simulation of selective emitter and the rear point contact solar cells, for which the multi-dimensionality of the transport model is required in order to properly account for all physical competing mechanisms. In the second part of the thesis, the optical problems is discussed. Two novel and computationally efficient RCWA implementations for 2-D simulation domains as well as a third RCWA for 3-D structures based on an eigenvalues calculation approach have been presented. The proposed simulators have been validated in terms of accuracy, numerical convergence, computation time and correctness of results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati film sottili (circa 10 nm) di silicio amorfo idrogenato (a-Si:H), studiando in particolare leghe a basso contenuto di ossigeno e carbonio. Tali layer andranno ad essere implementati come strati di passivazione per wafer di Si monocristallino in celle solari ad eterogiunzione HIT (heterojunctions with intrinsic thin layer), con le quali recentemente è stato raggiunto il record di efficienza pari a 24.7% . La deposizione è avvenuta mediante PECVD (plasma enhanced chemical vapour deposition). Tecniche di spettroscopia ottica, come FT-IR (Fourier transform infrared spectroscopy) e SE (spettroscopic ellipsometry) sono state utilizzate per analizzare le configurazioni di legami eteronucleari (Si-H, Si-O, Si-C) e le proprietà strutturali dei film sottili: un nuovo metodo è stato implementato per calcolare i contenuti atomici di H, O e C da misure ottiche. In tal modo è stato possibile osservare come una bassa incorporazione (< 10%) di ossigeno e carbonio sia sufficiente ad aumentare la porosità ed il grado di disordine a lungo raggio del materiale: relativamente a quest’ultimo aspetto, è stata sviluppata una nuova tecnica per determinare dagli spettri ellisometrici l’energia di Urbach, che esprime la coda esponenziale interna al gap in semiconduttori amorfi e fornisce una stima degli stati elettronici in presenza di disordine reticolare. Nella seconda parte della tesi sono stati sviluppati esperimenti di annealing isocrono, in modo da studiare i processi di cristallizzazione e di effusione dell’idrogeno, correlandoli con la degradazione delle proprietà optoelettroniche. L’analisi dei differenti risultati ottenuti studiando queste particolari leghe (a-SiOx e a-SiCy) ha permesso di concludere che solo con una bassa percentuale di ossigeno o carbonio, i.e. < 3.5 %, è possibile migliorare la risposta termica dello specifico layer, ritardando i fenomeni di degradazione di circa 50°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diameters of traditional dish concentrators can reach several tens of meters, the construction of monolithic mirrors being difficult at these scales: cheap flat reflecting facets mounted on a common frame generally reproduce a paraboloidal surface. When a standard imaging mirror is coupled with a PV dense array, problems arise since the solar image focused is intrinsically circular. Moreover, the corresponding irradiance distribution is bell-shaped in contrast with the requirement of having all the cells under the same illumination. Mismatch losses occur when interconnected cells experience different conditions, in particular in series connections. In this PhD Thesis, we aim at solving these issues by a multidisciplinary approach, exploiting optical concepts and applications developed specifically for astronomical use, where the improvement of the image quality is a very important issue. The strategy we propose is to boost the spot uniformity acting uniquely on the primary reflector and avoiding the big mirrors segmentation into numerous smaller elements that need to be accurately mounted and aligned. In the proposed method, the shape of the mirrors is analytically described by the Zernike polynomials and its optimization is numerically obtained to give a non-imaging optics able to produce a quasi-square spot, spatially uniform and with prescribed concentration level. The freeform primary optics leads to a substantial gain in efficiency without secondary optics. Simple electrical schemes for the receiver are also required. The concept has been investigated theoretically modeling an example of CPV dense array application, including the development of non-optical aspects as the design of the detector and of the supporting mechanics. For the method proposed and the specific CPV system described, a patent application has been filed in Italy with the number TO2014A000016. The patent has been developed thanks to the collaboration between the University of Bologna and INAF (National Institute for Astrophysics).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kosten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Verständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und benötigt weitere Forschung. In dieser Dissertation werden Computersimulationen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen. Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrachtet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausgedrückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzuführen. Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperaturabhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt. Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb existiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern. Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der Solarzellen (¼ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS. Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 = 279 K. Großkanonische Simulationen mit vorgegebenen Werten für die chemischen Potentiale von Cu und In wurden verwendet, um die Konzentrations- Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen. Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defektphasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert. Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden. Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell beobachtet werden. Die Simulationsergebnisse können verwendet werden, um den industriellen CIGS-Produktionspr

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il calore del sole diventa energia frigorifera sostenibile economicamente ed energticamente. Gli sviluppi tecnologici degli ultimi anni nel campo dell’energia solare consentono consentono di realizzare quanto apparentemente in contraddizione con i fondamentali teoremi della fisica classica ed in particolare della termodinamica. Questo elaborato vuole analizzare come, se e in quali casi sia conveniente l'installazione di un impianto di solar cooling per la climatizzazione estiva di un edificio. Partendo dal problema, sempre più attuale, dei crescenti consumi di energia elettrica per il condizionamento estivo degli edifici, dalla ricerca bibliografica è emerso come inizi a farsi strada, come soluzione percorribile e logicamente interessante, l’utilizzo dell’energia solare, fruttata in impianti che prendono il nome di impianti di solar cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dye-sensitized solar cells a blocking layer between the transparent electrode and the mesoporous titanium dioxide film is used to prevent short-circuits between the hole-conductor and the front electrode. The conventional approach is to use a compact layer of titanium dioxide prepared by spin coating or spray pyrolysis. The thickness of the blocking layer is critical. On one hand, the layer has to be thick enough to cover the rough substrate completely. On the other hand, the serial resistance increases with increasing film thickness, because the layer acts as an ohmic resistance itself. In this thesis an amphiphilic diblock copolymer is used as a functional template to produce an alternative, hybrid blocking layer. The hybrid blocking layer is thinner than the conventional, compact titanium dioxide film and thereby possesses a higher conductivity. Still, this type of blocking layer covers the rough electrode material completely and avoids current loss through charge recombination. The novel blocking layer is prepared using a tailored, amphiphilic block copolymer in combination with sol-gel chemistry. While the hydrophilic poly(ethylene oxide) part of the polymer coordinates a titanium dioxide precursor to form a percolating network of titania particles, the hydrophobic poly(dimethylsiloxane) part turns into an insulating ceramic layer. With this technique, crack-free films with a thickness down to 24 nm are obtained. The presence of a conductive titanium dioxide network for current flow, which is embedded in an insulating ceramic material, is validated by conductive scanning force microscopy. This is the first time that such a hybrid blocking layer is implemented in a solar cell. With this approach the efficiency could be increased up to 27 % compared to the conventional blocking layer. Thus, it is demonstrated that the hybrid blocking layer represents a competitive alternative to the classical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Für viele Anwendungen von Nanomaterialien sind maßgeschneiderte Produkte wün-schenswert, weswegen ein tiefgreifendes und genaues Wissen der Reaktionsabläufe, die zu diesen Produkten führen, unabdingbar ist. Um dies im Fall von SnO2 zu erreichen, behandelt diese Arbeit die kontrollierte Synthese und genaue Charakterisierung von Nanopartikeln von Zinn(IV) Oxid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a study of the charge generation, transport, and recombination processes in organic solar cells performed with time-resolved experimental techniques. Organic solar cells based on polymers can be solution-processed on large areas and thus promise to become an inexpensive source of renewable energy. Despite significant improvements of the power conversion efficiency over the last decade, the fundamental working principles of organic solar cells are still not fully understood. It is the aim of this thesis to clarify the role of different performance limiting processes in organic solar cells and to correlate them with the molecular structure of the studied materials, i.e. poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). By combining time-of-flight charge transport measurements, transient absorption spectroscopy, a newly developed experimental technique called time delayed double pulse experiment and drift-diffusion simulations a comprehensive analysis of the working principles of P3HT:PCBM solar cells could be performed. It was found that the molecular structure of P3HT (i.e. the regioregularity) has a pronounced influence on the morphology of thin films of pristine P3HT and of blends of P3HT with PCBM. This morphology in turn affected the charge transport properties as well as the charge generation and recombination kinetics. Well-ordered regioregular P3HT was found to be characterized by a high charge carrier mobility, efficient charge generation and low but field-dependent (non-geminate) recombination. Importantly, the charge generation yield was found to be independent of temperature and applied electric field as opposed to the expectations of the Onsager-Braun model that is commonly applied to describe the temperature and field dependence of charge generation in organic solar cells. These properties resulted in a reasonably good power conversion efficiency. In contrast to this, amorphous regiorandom P3HT was found to show poor charge generation, transport and recombination properties that combine to a much lower power conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Arbeit hat viele beispiellose synthetische Ansätze für neuartige Verbundwerkstoffe Graphen-und stickstoffhaltigen graphitischen Materialien erforscht. Die erhaltenen Materialien wurden als den transparenten Elektroden der Solarzellen, die freistehenden Elektroden mit verbesserter mechanischer Festigkeit, und die Kathoden der Brennstoffzellen der Sauerstoffreduktion aufgebracht.rnAlle Ergebnisse haben eindeutig das große Potenzial von Graphen basierenden Materialien und stickstoffhaltigen graphitische Kohlenstoffe als neuartige Elektrodenmaterialien für neue Energie-Geräten demonstriert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, an increasing attention has been given to the optimization of the performances of new supramolecular systems, as antennas for light collection. In such background, the aim of this thesis was the study of multichromophoric architectures capable of performing such basic action. A synthetic antenna should consist of a structure with large UV-Vis absorption cross-section, panchromatic absorption, fixed orientation of the components and suitable energy gradients between them, in order to funnel absorbed energy towards a specific site, through fast energy-transfer processes. Among the systems investigated in this thesis, three suitable classes of compounds can be identified: 1) transition metal-based multichromophoric arrays, as models for antenna construction, 2) free-base trans-A2B-phenylcorroles, as self-assembling systems to make effective mimics of the photosynthetic system, and 3) a natural harvester, the Photosystem I, immobilized on the photoanode of a solar-to-fuel conversion device. The discussion starts with the description of the photophysical properties of dinuclear quinonoid organometallic systems, able to fulfil some of the above mentioned absorption requirements, displaying in some cases panchromatic absorption. The investigation is extended to the efficient energy transfer processes occurring in supramolecular architectures, suitably organized around rigid organic scaffolds, such as spiro-bifluorene and triptycene. Furthermore, the photophysical characterization of three trans-A2B-phenylcorroles with different substituents on the meso-phenyl ring is introduced, revealing the tendency of such macrocycles to self-organize into dimers, by mimicking natural self-aggregates antenna systems. In the end, the photophysical analysis moved towards the natural super-complex PSI-LHCI, immobilized on the hematite surface of the photoanode of a bio-hybrid dye-sensitized solar cell. The importance of the entire work is related to the need for a deep understanding of the energy transfer mechanisms occurring in supramolecules, to gain insights and improve the strategies for governing the directionality of the energy flow in the construction of well-performing antenna systems.