Self assembled materials for solar cell application
Data(s) |
2010
|
---|---|
Resumo |
In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn New materials and assemblies were designed and tested for hybrid solar cell application. A simple blending approach was used to prepare hybrid solar cells in a convenient, cheap and fast method. Nano crystalline TiO2 rods were blended with different hole conducting materials and tested in solar cell devices. Comparing their performance in photovoltaic devices, while experimental conditions are kept identical, showed that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of different influence for different hole conducting materials. External influences as long term stability were investigated.rnIn comparison to the blend approach a new one-pot approach was invented to prepare a nanostructured, multi-functional material with orthogonal properties. It consists of TiO2 as a functional metal oxide and a new amphiphilic block-copolymer poly(ethyleneoxide)-b-poly(triphenylamine) (PEO-b-PTPA) that was synthesized. The hybrid material was obtained within a single step via self assembly in solution. Therefore a method had to be found to obtain crystalline TiO2 under mild conditions. Within the materials synthesis the block-copolymer not only acts as a templating agent but also adds an electronic functionality to the resulting hybrid material. During the synthesis a variety of self assembled morphologies ranging from spheres to wires were created in a controlled fashion. The obtained morphology depends on the weight fraction of the polymer, solvent, TiO2 precursor and acid. Studying films on silicon wafers with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) a ternary phase diagram could be mapped whereas the crystallinity of TiO2 could be proved by high resolution-TEM. Different morphologies of this self assembled hybrid material were tested for solar cell application. Even for devices with layer thicknesses of the active material below 10 nm power conversion efficiencies up to 0.15 % at 1 sun and 1.5 AM were observed. The solar cell efficiency was increased with further development of the one-pot approach by changing the precursor. A polyethyleneglycole modified titanate was used as precursor in combination with the functional block copolymer PEO-b-PTPA. Again self-assembled network morphologies were obtained and tested in solar cell devices. While the formation of percolating networks is of general importance the solar cell performance was found to depend on the morphological design of the hybrid material. With the aid of conductive scanning force microscopy, it was proven to preserve a percolating network despite an increase of the active layer thickness. In combination with a special functionalized Ti-precursor hybrid bulk heterojunction solar cells having a maximum power conversion efficiency of 0.4 % at 1 sun and 1.5 AM were obtained.rn |
Formato |
application/pdf |
Identificador |
urn:nbn:de:hebis:77-22443 |
Idioma(s) |
eng |
Publicador |
09: Chemie, Pharmazie und Geowissenschaft. 09: Chemie, Pharmazie und Geowissenschaft |
Direitos |
http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php |
Palavras-Chave | #Hybridmaterial, selborganisierende Nanostrukturen #hybrid materials, self orgenized nanostructures, #Natural sciences and mathematics |
Tipo |
Thesis.Doctoral |