979 resultados para Signal Sequence Trap


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal crayfish Pacifastacus leniusculus (Dana), a native of north-western North America, is now a common resident in some British fresh waters following its introduction to England in 1976 (Lowery & Holdich 1988). In 1984, signal crayfish were introduced into the River Great Ouse, the major lowland river in southern central England, where they have established a large breeding population. This study examines two sites near Thornborough Weir. For the measurement and description of home range a new eletronic microchip system and a modified capture-mark-recapture method were employed. Signal crayfish were marked or tagged to see if they gradually moved away from their burrows. This method proved to be successful for estimating population densities when a section of river is divided into several equidistant linear ”locations”.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have experimentally studied the parametric excitation of Rb-87 atoms in a quadrupole-Ioffe-configuration trap. The temperature of an atomic cloud and number of trapped atoms versus time and modulation frequency of the parametric excitation field have been measured. We also noticed that the contribution of atomic collisions to the energy distributions can not be ignored in the case of weak excitation, which results in a lower temperature of the atomic cloud than by Gehm [Phys. Rev. A 58, 3914 (1998)] predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. There remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal crayfish (Pacifastacus leniusculus) have existed in the upper reaches of Broadmead Brook in Wiltshire since 200 individuals were introduced at West Kington in 1981. The population has expanded upstream and downstream since this introduction, however, giving rise to concerns that it may potentially threaten the native crayfish population further downstream. Signal crayfish can act as a vector of crayfish plague - a disease caused by the fungus Aphanomyces astaci Schikora which results in almost complete mortality to the native, white-clawed crayfish Austropotamobius pallipes. The native crayfish in Broadmead Brook have not yet succumbed to crayfish plague and are currently free of the disease. However, as signal crayfish appear to out-compete the native species, the native population could still be under threat. In this article, we highlight the findings of previous crayfish surveys on Broadmead Brook and describe work undertaken in summer 2001 to map the current distribution of native and signal crayfish. Finally, options for controlling the spread of signal crayfish are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 2 (IL2) is the primary growth hormone used by mature T cells and this lymphokine plays an important role in the magnification of cell-mediated immune responses. Under normal circumstances its expression is limited to antigen-activated type 1 helper T cells (TH1) and the ability to transcribe this gene is often regarded as evidence for commitment to this developmental lineage. There is, however, abundant evidence than many non-TH1 T cells, under appropriate conditions, possess the ability to express this gene. Of paramount interest in the study of T-cell development is the mechanisms by which differentiating thymocytes are endowed with particular combinations of cell surface proteins and response repertoires. For example, why do most helper T cells express the CD4 differentiation antigen?

As a first step in understanding these developmental processes the gene encoding IL2 was isolated from a mouse genomic library by probing with a conspecific IL2 cDNA. The sequence of the 5' flanking region from + 1 to -2800 was determined and compared to the previously reported human sequence. Extensive identity exists between +1 and -580 (86%) and sites previously shown to be crucial for the proper expression of the human gene are well conserved in both sequence location in the mouse counterpart.

Transient expression assays were used to evaluate the contribution of various genomic sequences to high-level gene expression mediated by a cloned IL2 promoter fragment. Differing lengths of 5' flanking DNA, all terminating in the 5' untranslated region, were linked to a reporter gene, bacterial chloramphenicol acetyltransferase (CAT) and enzyme activity was measured after introduction into IL2-producing cell lines. No CAT was ever detected without stimulation of the recipient cells. A cloned promoter fragment containing only 321 bp of upstream DNA was expressed well in both Jurkat and EL4.El cells. Addition of intragenic or downstream DNA to these 5' IL2-CAT constructs showed that no obvious regulatory regions resided there. However, increasing the extent of 5' DNA from -321 to -2800 revealed several positive and negative regulatory elements. One negative region that was well characterized resided between -750 and -1000 and consisted almost exclusively of alternating purine and pyrimidines. There is no sequence resembling this in the human gene now, but there is evidence that there may have once been.

No region, when deleted, could relax either the stringent induction-dependence on cell-type specificity displayed by this promoter. Reagents that modulated endogenous IL2 expression, such as cAMP, cyclosporin A, and IL1, affected expression of the 5' IL2-CAT constructs also. For a given reagent, expression from all expressible constructs was suppressed or enhanced to the same extent. This suggests that these modulators affect IL2 expression through perturbation of a central inductive signal rather than by summation of the effects of discrete, independently regulated, negative and positive transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the representation of signal envelope is treated, motivated by the classical Hilbert representation in which the envelope is represented in terms of the received signal and its Hilbert transform. It is shown that the Hilbert representation is the proper one if the received signal is strictly bandlimited but that some other filter is more appropriate in the bandunlimited case. A specific alternative filter, the conjugate filter, is proposed and the overall envelope estimation error is evaluated to show that for a specific received signal power spectral density the proposed filter yields a lower envelope error than the Hilbert filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge-Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. (c) 2005 Elsevier GmbH. All rights reserved.