The genome sequence of taurine cattle: a window to ruminant biology and evolution.


Autoria(s): Bovine Genome Sequencing; Analysis Consortium; Elsik C.G.; Tellam R.L.; Worley K.C.; Gibbs R.A.; Muzny D.M.; Weinstock G.M.; Adelson D.L.; Eichler E.E.; Elnitski L.; Guigó R.; Hamernik D.L.; Kappes S.M.; Lewin H.A.; Lynn D.J.; Nicholas F.W.; Reymond A.; Rijnkels M.; Skow L.C.; Zdobnov E.M.; Schook L.; Womack J.; Alioto T.; Antonarakis S.E.; Astashyn A.; Chapple C.E.; Chen H.C.; Chrast J.; Câmara F.; Ermolaeva O.; Henrichsen C.N.; Hlavina W.; Kapustin Y.; Kiryutin B.; Kitts P.; Kokocinski F.; Landrum M.; Maglott D.; Pruitt K.; Sapojnikov V.; Searle S.M.; Solovyev V.; Souvorov A.; Ucla C.; Wyss C.; Anzola J.M.; Gerlach D.; Elhaik E.; Graur D.; Reese J.T.; Edgar R.C.; McEwan J.C.; Payne G.M.; Raison J.M.; Junier T.; Kriventseva E.V.; Eyras E.; Plass M.; Donthu R.; Larkin D.M.; Reecy J.; Yang M.Q.; Chen L.; Cheng Z.; Chitko-McKown C.G.; Liu G.E.; Matukumalli L.K.; Song J.; Zhu B.; Bradley D.G.; Brinkman F.S.; Lau L.P.; Whiteside M.D.; Walker A.; Wheeler T.T.; Casey T.; German J.B.; Lemay D.G.; Maqbool N.J.; Molenaar A.J.; Seo S.; Stothard P.; Baldwin C.L.; Baxter R.; Brinkmeyer-Langford C.L.; Brown W.C.; Childers C.P.; Connelley T.; Ellis S.A.; Fritz K.; Glass E.J.; Herzig C.T.; Iivanainen A.; Lahmers K.K.; Bennett A.K.; Dickens C.M.; Gilbert J.G.; Hagen D.E.; Salih H.; Aerts J.; Caetano A.R.; Dalrymple B.; Garcia J.F.; Gill C.A.; Hiendleder S.G.; Memili E.; Spurlock D.; Williams J.L.; Alexander L.; Brownstein M.J.; Guan L.; Holt R.A.; Jones S.J.; Marra M.A.; Moore R.; Moore S.S.; Roberts A.; Taniguchi M.; Waterman R.C.; Chacko J.; Chandrabose M.M.; Cree A.; Dao M.D.; Dinh H.H.; Gabisi R.A.; Hines S.; Hume J.; Jhangiani S.N.; Joshi V.; Kovar C.L.; Lewis L.R.; Liu Y.S.; Lopez J.; Morgan M.B.; Nguyen N.B.; Okwuonu G.O.; Ruiz S.J.; Santibanez J.; Wright R.A.; Buhay C.; Ding Y.; Dugan-Rocha S.; Herdandez J.; Holder M.; Sabo A.; Egan A.; Goodell J.; Wilczek-Boney K.; Fowler G.R.; Hitchens M.E.; Lozado R.J.; Moen C.; Steffen D.; Warren J.T.; Zhang J.; Chiu R.; Schein J.E.; Durbin K.J.; Havlak P.; Jiang H.; Liu Y.; Qin X.; Ren Y.; Shen Y.; Song H.; Bell S.N.; Davis C.; Johnson A.J.; Lee S.; Nazareth L.V.; Patel B.M.; Pu L.L.; Vattathil S.; Williams R.L.; Curry S.; Hamilton C.; Sodergren E.; Wheeler D.A.; Barris W.; Bennett G.L.; Eggen A.; Green R.D.; Harhay G.P.; Hobbs M.; Jann O.; Keele J.W.; Kent M.P.; Lien S.; McKay S.D.; McWilliam S.; Ratnakumar A.; Schnabel R.D.; Smith T.; Snelling W.M.; Sonstegard T.S.; Stone R.T.; Sugimoto Y.; Takasuga A.; Taylor J.F.; Van Tassell C.P.; Macneil M.D.; Abatepaulo A.R.; Abbey C.A.; Ahola V.; Almeida I.G.; Amadio A.F.; Anatriello E.; Bahadue S.M.; Biase F.H.; Boldt C.R.; Carroll J.A.; Carvalho W.A.; Cervelatti E.P.; Chacko E.; Chapin J.E.; Cheng Y.; Choi J.; Colley A.J.; de Campos T.A.; De Donato M.; Santos I.K.; de Oliveira C.J.; Deobald H.; Devinoy E.; Donohue K.E.; Dovc P.; Eberlein A.; Fitzsimmons C.J.; Franzin A.M.; Garcia G.R.; Genini S.; Gladney C.J.; Grant J.R.; Greaser M.L.; Green J.A.; Hadsell D.L.; Hakimov H.A.; Halgren R.; Harrow J.L.; Hart E.A.; Hastings N.; Hernandez M.; Hu Z.L.; Ingham A.; Iso-Touru T.; Jamis C.; Jensen K.; Kapetis D.; Kerr T.; Khalil S.S.; Khatib H.; Kolbehdari D.; Kumar C.G.; Kumar D.; Leach R.; Lee J.C.; Li C.; Logan K.M.; Malinverni R.; Marques E.; Martin W.F.; Martins N.F.; Maruyama S.R.; Mazza R.; McLean K.L.; Medrano J.F.; Moreno B.T.; Moré D.D.; Muntean C.T.; Nandakumar H.P.; Nogueira M.F.; Olsaker I.; Pant S.D.; Panzitta F.; Pastor R.C.; Poli M.A.; Poslusny N.; Rachagani S.; Ranganathan S.; Razpet A.; Riggs P.K.; Rincon G.; Rodriguez-Osorio N.; Rodriguez-Zas S.L.; Romero N.E.; Rosenwald A.; Sando L.; Schmutz S.M.; Shen L.; Sherman L.; Southey B.R.; Lutzow Y.S.; Sweedler J.V.; Tammen I.; Telugu B.P.; Urbanski J.M.; Utsunomiya Y.T.; Verschoor C.P.; Waardenberg A.J.; Wang Z.; Ward R.; Weikard R.; Welsh T.H.; White S.N.; Wilming L.G.; Wunderlich K.R.; Yang J.; Zhao F.Q.
Data(s)

2009

Resumo

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

Identificador

http://serval.unil.ch/?id=serval:BIB_EE8C1C9D9ECA

isbn:1095-9203[electronic], 0036-8075[linking]

pmid:19390049

doi:10.1126/science.1169588

isiid:000265411200050

Idioma(s)

en

Fonte

Science, vol. 324, no. 5926, pp. 522-528

Palavras-Chave #Alternative Splicing; Animals; Animals, Domestic; Cattle; Evolution; Evolution, Molecular; Female; Genetic Variation; Genome; Humans; Male; MicroRNAs/genetics; Molecular Sequence Data; Proteins/genetics; Sequence Analysis, DNA; Species Specificity; Synteny
Tipo

info:eu-repo/semantics/article

article