890 resultados para Robot movil
Resumo:
This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.
Resumo:
An important concept proposed in the early stage of robot path planning field is the shrinking of the robot to a point and meanwhile expanding of the obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision free path for a point robot among the Cspace obstacles. However, the research experiences obtained so far have shown that the calculation of the Cspace obstacles is very hard work when the following situations occur: 1. both the robot and obstacles are not polygons and 2. the robot is allowed to rotate. This situation is even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. Obviously a direct path planning approach without the calculation of the Cspace obstacles is strongly needed. This paper presents such a new real-time robot path planning approach which, to the best of our knowledge, is the first one in the robotic community. The fundamental ideas are the utilization of inequality and optimization technique. Simulation results have been presented to show its merits.
Resumo:
SCARA型机器人的控制问题由于其动力学模型中没有重力矩项的作用而得以简化,由于在实际应用中经常要求其高速运动,则对具有强耦合的哥氏力与向心力的控制就成为制约其系统性能的重要问题。提出通过线性变换对机器人系统解耦,将高阶系统转化为解耦的低阶系统进行控制的方法,并且应用极点配置对解耦的系统求解机器人控制器。该方法无需测量关节速度和加速度,只需要测量关节位置信号。所提出的控制器既能保证闭环系统全局渐进稳定,又能通过对线性化系统闭环极点的配置来获得期望的闭环系统响应性能。仿真实验证明了所提出的控制器设计方法的可行性。