956 resultados para PATHOGENIC FUNGUS
Resumo:
Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.
Resumo:
There has been significant progress in our understanding of the pathogenesis of AS. The advent of genome-wide association studies has increased the known loci associated with AS to more than 40. The endoplasmic reticulum resident aminopeptidases (ERAP) 1 and 2 were identified in this manner and are of particular interest. There appears to be a genetic as well as a functional interaction of ERAP1 and 2 with HLA-B27 based on the known functions of these molecules. Recent studies on the structure, immunological effects and the peptide-trimming properties of ERAP 1 and 2 have helped to provide insight into their pathogenic potential in AS. In this review, we explore the role of ERAP 1 and 2 in the pathogenesis of AS. © The Author 2015.
Resumo:
Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.
Resumo:
Double-stranded RNA and associated proteins are known to regulate the gene expression of most eukaryotic organisms. These regulation pathways have different components, outcomes and distinct nomenclature depending on the model system, and often they are referred to collectively as RNA silencing. In many cases, RNA-dependent RNA polymerases (RdRPs) are found to be involved in the RNA silencing, but their targets, activities, interaction partners and reaction products remain enigmatic. In the filamentous fungus Neurospora crassa, the RdRP QDE-1 is critical for silencing of transgenes a phenomenon known as quelling. In this thesis the structure, biochemical activities and biological functions of QDE-1 were extensively studied. This dimeric RdRP was shown to possess five distinct catalytic in vitro activities that could be dissected by mutagenesis and by altering reaction conditions. The biochemical characterization implied that QDE-1 is actually an active DNA-dependent RNA polymerase that has additional RdRP activity. It also provided a structural explanation for the dimerization and suggested a biological framework for the functions of QDE-1 in vivo. (I) QDE-1 was also studied in a broader context along with the other components of the quelling pathway. It was shown that DNA damage in Neurospora causes a dramatic increase in the expression level of the Argonaute protein QDE-2 as well as the synthesis of a novel class of small RNAs known as qiRNAs. The accumulation of qiRNAs was shown to be dependent on several quelling components, and particularly to be derived from an aberrant ssRNA (aRNA) molecule that is synthesized by QDE-1 in the nucleus. The genomic distribution of qiRNA targets was analyzed and the possible biological significance of qiRNAs was studied. Importantly, qiRNAs are the first class of small RNAs that are induced by DNA damage. (II) After establishing that QDE-1 is a multifunctional RNA polymerase with several activities, template specificities and subcellular locations, the focus was turned onto its interaction partners. It had been previously known that QDE-1 associates with Replication Protein A (RPA), but the RecQ helicase QDE-3 was now shown to regulate this interaction. RPA was also observed to promote QDE-1 dependent dsRNA synthesis in vitro. By characterizing the interplay between QDE-1, QDE-3 and RPA, a working model of quelling and qiRNA pathways in Neurospora was presented. (III) This work sheds light on the complexity of the various RNA silencing pathways of a fungal model system. It shows how an RdRP can regulate gene expression on many levels, and suggests novel lines of research in other eukaryotic organisms.
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.
Resumo:
A lack of information on protein-protein interactions at the host-pathogen interface is impeding the understanding of the pathogenesis process. A recently developed, homology search-based method to predict protein-protein interactions is applied to the gastric pathogen, Helicobacter pylori to predict the interactions between proteins of H. pylori and human proteins in vitro. Many of the predicted interactions could potentially occur between the pathogen and its human host during pathogenesis as we focused mainly on the H. pylori proteins that have a transmembrane region or are encoded in the pathogenic island and those which are known to be secreted into the human host. By applying the homology search approach to protein-protein interaction databases DIP and iPfam, we could predict in vitro interactions for a total of 623 H. pylori proteins with 6559 human proteins. The predicted interactions include 549 hypothetical proteins of as yet unknown function encoded in the H. pylori genome and 13 experimentally verified secreted proteins. We have recognized 833 interactions involving the extracellular domains of transmembrane proteins of H. pylori. Structural analysis of some of the examples reveals that the interaction predicted by us is consistent with the structural compatibility of binding partners. Examples of interactions with discernible biological relevance are discussed.
Resumo:
Mismatch repair (MMR) mechanisms repair DNA damage occurring during replication and recombination. To date, five human MMR genes, MSH2, MHS6, MSH3, MLH1 and PMS2 are known to be involved in the MMR function. Human MMR proteins form 3 different heterodimers: MutSα (MSH2 and MSH6) and MutSβ (MSH2 and MSH3), which are needed for mismatch recognition and binding, and MutLα (MLH1 and PMS2), which is needed for mediating interactions between MutS homologues and other MMR proteins. The other two MutL homologues, MLH3 and PMS1, have been shown to heterodimerize with MLH1. However, the heterodimers MutLγ (MLH1and MLH3) and MutLβ (MLH1 and PMS1) are able to correct mismatches only with low or no efficiency, respectively. A deficient MMR mechanism is associated with the hereditary colorectal cancer syndrome called hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. HNPCC is the most common hereditary colorectal cancer syndrome and accounts for 2-5% of all colorectal cancer cases. HNPCC-associated mutations have been found in 5 MMR genes: MLH1, MSH2, MSH6, PMS2 and MLH3. Most of the mutations have been found in MLH1 and MSH2 (~90%) and are associated with typical HNPCC, while mutations in MSH6, PMS2 and MLH3 are mainly linked to putative HNPCC families lacking the characteristics of the syndrome. More data of MLH3 mutations are needed to assess the significance of its mutations in HNPCC. In this study, were functionally characterized 51 nontruncating mutations in the MLH1, MLH3 and MSH2 genes to address their pathogenic significance and mechanism of pathogenicity. Of the 36 MLH1 mutations, 22 were deficient in more than one assay, 2 variants were impaired only in one assay, and 12 variants behaved like the wild type protein, whereas all seven MLH3 mutants functioned like the wild type protein in the assays. To further clarify the role and relevance of MLH3 in MMR, we analyzed the subcellular localization of the native MutL homologue proteins. Our immunofluorescence analyses indicated that when all the three MutL homologues are natively expressed in human cells, endogenous MLH1 and PMS2 localize in the nucleus, whereas MLH3 stays in the cytoplasm. The coexpression of MLH3 with MLH1 results in its partial nuclear localization. Only one MSH2 mutation was pathogenic in the in vitro MMR assay. Our study on MLH1 mutations could clearly distinguish nontruncating alterations with severe functional defects from those not or only slightly impaired in protein function. However, our study on MLH3 mutations suggest that MLH3 mutations per se are not sufficient to trigger MMR deficiency and the continuous nuclear localization of MLH1 and PMS2 suggest that MutLα has a major activity in MMR in vivo. Together with our functional assays, this confirms that MutLγ is a less efficient MMR complex than MutLα.
Resumo:
Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.
Resumo:
The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.
A Mycobacterial Cyclic AMP Phosphodiesterase That Moonlights as a Modifier of Cell Wall Permeability
Resumo:
Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in /the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization.Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.
Resumo:
Three different Norway spruce cutting clones growing in three environments with different soil and climatic conditions were studied. The purpose was to follow variation in the radial growth rate, wood properties and lignin content and to modify wood lignin with a natural monolignol, coniferyl alcohol, by making use of inherent wood peroxidases. In addition, the incorporation of chlorinated anilines into lignin was studied with synthetic model compounds and synthetic lignin preparations to show whether unnatural compounds originating from pesticides could be bound in the lignin polymer. The lignin content of heartwood, sapwood and earlywood was determined by applying Fourier transform infrared (FTIR) spectroscopy and a principal component regression (PCR) technique. Wood blocks were treated with coniferyl alcohol by using a vacuum impregnation method. The effect of impregnation was assessed by FTIR and by a fungal decay test. Trees from a fertile site showed the highest growth rate and sapwood lignin content and the lowest latewood proportion, weight density and modulus of rupture (MOR). Trees from a medium fertile site had the lowest growth rate and the highest latewood proportion, weight density, modulus of elasticity (MOE) and MOR. The most rapidly growing clone showed the lowest latewood proportion, weight density, MOE and MOR. The slowest growing clone had the lowest sapwood lignin content and the highest latewood proportion, weight density, MOE and MOR. Differences between the sites and clones were small, while fairly large variation was found between the individual trees and growing seasons. The cutting clones maintained clone-dependent wood properties in the different growing sites although variation between trees was high and climatic factors affected growth. The coniferyl alcohol impregnation increased the content of different lignin-type phenolic compounds in the wood as well as wood decay resistance against a white-rot fungus, Coriolus versicolor. During the synthetic lignin preparation 3,4-dichloroaniline became bound by a benzylamine bond to β-O-4 structures in the polymer and it could not be released by mild acid hydrolysis. The natural monolignol, coniferyl alcohol, and chlorinated anilines could be incorporated into the lignin polymer in vivo and in vitro, respectively.
Resumo:
Throughout the history of Linnean taxonomy, species have been described with varying degrees of justification. Many descriptions have been based on only a few ambiguous morphological characters. Moreover, species have been considered natural, well-defined units whereas higher taxa have been treated as disparate, non-existent creations. In the present thesis a few such cases were studied in detail. Often the species-level descriptions were based on only a few specimens and the variation previously thought to be interspecific was found to be intraspecific. In some cases morphological characters were sufficient to resolve the evolutionary relationships between the taxa, but generally more resolution was gained by the addition of molecular evidence. However, both morphological and molecular data were found to be deceptive in some cases. The DNA sequences of morphologically similar specimens were found to differ distinctly in some cases, whereas in other closely related species the morphology of specimens with identical DNA sequences differed substantially. This study counsels caution when evolutionary relationships are being studied utilizing only one source of evidence or a very limited number of characters (e.g. barcoding). Moreover, it emphasizes the importance of high quality data as well as the utilization of proper methods when making scientific inferences. Properly conducted analyses produce robust results that can be utilized in numerous interesting ways. The present thesis considered two such extensions of systematics. A novel hypothesis on the origin of bioluminescence in Elateriformia beetles is presented, tying it to the development of the clicking mechanism in the ancestors of these animals. An entirely different type of extension of systematics is the proposed high value of the white sand forests in maintaining the diversity of beetles in the Peruvian Amazon. White sand forests are under growing pressure from human activities that lead to deforestation. They were found to harbor an extremely diverse beetle fauna and many taxa were specialists living only in this unique habitat. In comparison to the predominant clay soil forests, considerably more elateroid beetles belonging to all studied taxonomic levels (species, genus, tribus, and subfamily) were collected in white sand forests. This evolutionary diversity is hypothesized to be due to a combination of factors: (1) the forest structure, which favors the fungus-plant interactions important for the elateroid beetles, (2) the old age of the forest type favoring survival of many evolutionary lineages and (3) the widespread distribution and fragmentation of the forests in the Miocene, favoring speciation.
Resumo:
Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).
Resumo:
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.
Resumo:
The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.