913 resultados para Nuclear magnetic resonance (NQR)
Resumo:
C-13 and H-1 NMR technique was used to study the interaction of Gly-Gly with heavy lanthanide cations Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ in aqueous solution. The stability constants for the 1:1 and 1:2 complexes of Gly-Gly with Ho3+ and Yb3+ were determined from the titration curves of chemical shift versus concentration ratio of lanthanide to Gly-Gly. The solution structure of the Ln-Gly-Gly complex was analyzed based upon the C-13 and H-1 lanthanide induced shifts and the results show that in the complex Gly Gly is coordinated to the lanthanide ion through the carboxyl oxygens with the backbone of the ligand in an extended state.
Resumo:
Three pairs of polyimide/polyimide blends (50/50 wt%) with different molecular structures were prepared by two ways, i.e. mixing of the polyamic acid precursors with subsequent imidization, and direct solution mixing of the polyimides. The blends were studied with DMA technique. The results obtained show that all the blends prepared with these two different ways are miscible, as there existed only one glass transition temperature(Tg) for all the blends. It is suggested that the miscibility of these polyimide/polyimide blends is a result of the strong inter-molecular charge-transfer interaction between the chains of their components.
Resumo:
Characterization, morphology and thermal properties of commercial ethylene-propylene block copolymers have been studied by C-13 nuclear magnetic resonance (n.m.r.) spectroscopy, differential scanning calorimetry (d.s.c.), dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM). The results obtained show that there exists some ethylene-propylene random copolymer in the block copolymers extractable by n-heptane. The possibility of forming PP-b-PE diblock copolymer is questionable on the basis of the effects of residual propene and the chain-transfer reaction in the sequential copolymerization. A difference in the thermal properties between commercial ethylene-propylene block copolymers and PP/PE blends was noticed, which cannot be used to identify PP-b-PE diblock copolymer. The multiphase structure has been confirmed by d.m.a. and SEM, with ethylene-propylene random copolymer and polyethylene forming the domains in the matrix of polypropylene.
Resumo:
In order to effectively identify and accurately evaluate low resistivity reservoir in Dongpu depression, using various logging data synthetically, geological and logging characteristics are summarized in term of different blocks on the basis of core analysis, cutting logging, oil testing and commissioning data. The formation mechanism of low resistivity reservoir is studied, and the main factors that cause low resistivity reservoir are discovered. The first factor is fine lithology, high shale content and hydrophilic rock. The second factor is high salinity formation water. The third factor is light oil, high gas quantity dissolved and large difference density of oil-water. The last factor is low amplitude structure of reservoir and low differential degree of oil-water. According to the characteristics of low resistivity reservoir, the method of compound lithology, the method of movable fluid, the method of phase permeability and the method of nuclear magnetic resonance logging are put forward. The compound lithology criterion of distinguishing hydrocarbon is founded in term of different blocks on the basis of electrical efficiency. The evaluation models of reservoir parameters are founded; whose core is oil saturation and phase permeability. In order to calculate oil saturation, the compound lithology model on the basis of electrical efficiency theory is chosen on condition that there is only the combination logging data of acoustic and induction; the W-S model is chosen on condition that there is all-around logging data. The calculational precision of oil saturation in low resistivity reservoir of work area is enhanced when the selection method is utilized. There are 1212 layers of reservoir newly added by the old well reexamination in the ten oil areas. The coincidence rate of logging interpretation reaches 83.2 percent according to the 74 well-times of oil testing or commissioning, which indicates that the distinguishing method and evaluation models of low resistivity reservoir above are feasible.By the reexamination, a ten million tons of proved reserves related to the low resistivity reservoir are newly added, consequently, the groundwork is established to increase reserve and production of old oilfields in the east of China and new livingness is added for the petroleum exploration and development in Dongpu depression.
Resumo:
In view of few researches into pore textures and anisotropy characteristics of Qiguzu-toutunhezu reservoir in Niuquanhu block in Santanghu Basin, in order to enhance the hydrocarbon recovery of the region of interest and improve the reservoir development effect, with the employment of the experiments like cast thin slice, scanning electron microscope, conventional high pressure mercury penetration, constant speed mercury penetration and nuclear magnetic resonance, the thesis makes a thorough research into pore texture characteristics and anisotropy characteristics of the sandstone reservoir. The research shows that the microscopic pore textures are complicated, the anisotropy is high and waterflood development water/oil displacement efficiency is low, which are mainly caused by the high microscopic anisotropy of the reservoir. Specially, the research shows that Qiguzu-toutunhezu reservoir belongs to braided delta front intrafacies, the intergranular pore is the main type of pores, which take up 65.50 percent of total pores, intergranular dissolved pores, feldspar dissolved pores and lithic dissolved pores are on the second place, and there are few carbonate dissolved pores. The reservoir belongs to mesopore-fine throat and mesopore-medium throat. The pore distribution of the sandstone reservoir is comparatively centralized. The reservoir inhomogeneity is mainly caused by the throat inhomogeneity. Diagenesis mainly includes compaction, cementation, metasomatism and dissolution. Compared with compaction, cementation exerts more direct impact on the decline of the porosity of the sandstone reservoir ( pore loss factor is 63.75 percent in the cementing process). Based on the classification of diagenetic stages, the reservoir diagenesis is on the stage of the late period of early diagenetic stage to early period of late diagenetic stage. The study area of the small sandstone reservoir layer of the anisotropy of the relatively strong; plane, the anisotropy of the relatively weak. microscopic anisotropy of its relatively strong.
Resumo:
Since 1970s, igneous reservoirs such as Shang741, Bin674 and Luol51 have been found in Jiyang depression, which are enrichment and heavy-producing. Showing good prospect of exploration and development, igneous reservoirs have been the main part of increasing reserves and production in Shengli oilfield. As fracture igneous reservoir being an extraordinary complex concealed reservoir and showing heavy heterogeneity in spatial distribution, the study of recognition, prediction, formation mechanism and the law of distribution of fracture is essential to develop the reservoir. Guided by multiple discipline theory such as sedimentology, geophysics, mineralogy, petroleum geology, structural geology and reservoir engineering, a set of theories and methods of recognition and prediction of fractured igneous rock reservoir are formed in this paper. Rock data, three-dimensional seismic data, log data, borehole log data, testing data and production data are combined in these methods by the means of computer. Based on the research of igneous rock petrography and reservoir formation mechanism, emphasized on the assessment and forecast of igneous rock reservoir, aimed at establishing a nonhomogeneity quantification model of fractured igneous rock reservoir, the creativity on the fracture recognition, prediction and formation mechanism are achieved. The research result is applied to Jiyang depression, suggestion of exploration and development for fractured igneous rock reservoir is supplied and some great achievement and favourable economic effect are achieved. The main achievements are gained as follows: 1. The main facies models of igneous rock reservoir in JiYang depression are summarized. Based on data and techniques of seism, well log and logging,started from the research of single well rock facies, proceeded by seismic and log facies research, from point to line and line to face, the regional igneous facies models are established. And hypabyssal intrusion allgovite facies model, explosion volcaniclastic rock facies model and overfall basaltic rocks facies model are the main facies models of igneous rock reservoir in JiYang depression. 2. Four nonhomogenous reservoir models of igneous reservoirs are established, which is the base of fracture prediction and recognition. According to characteristics of igneous petrology and spatial types of reservoir, igneous reservoirs of Jiyang depression are divided into four categories: fractured irruptive rock reservoir, fracture-pore thermocontact metamorphic rock and irruptive rock compound reservoir, pore volcanic debris cone reservoir and fracture-pore overfall basaltic rock reservoir. The spatial distribution of each model's reservoir has its features. And reservoirs can be divided into primary ones and secondary ones, whose mechanism of formation and laws of distribution are studied in this paper. 3. Eight geologic factors which dominate igneous reservoirs are presented. The eight geologic factors which dominates igneous reservoirs are igneous facies, epigenetic tectonics deformation, fracture motion, intensity of intrusive effect and adjoining-rock characters, thermo-contact metamorphic rock facies, specific volcano-tectonic position, magmatic cyclicity and epigenetic diagenetic evolution. The interaction of the eight factors forms the four types nonhomogenous reservoir models of igneous reservoirs in Jiyang depression. And igneous facies and fracture motion are the most important and primary factors. 4. Identification patterns of seismic, well log and logging facies of igneous rocks are established. Igneous rocks of Jiyang depression show typical reflecting features on seismic profile. Tabular reflection seismic facies, arc reflection seismic facies and hummocky or mushroom reflection seismic facies are the three main facies. Logging response features of basic basalt and diabase are shown as typical "three low and two high", which means low natural gamma value, low interval transit-time, low neutron porosity, high resistivity and high density. Volcaniclastic rocks show "two high and three low"-high neutron porosity, high interval transit-time, low density, low-resistance and low natural gamma value. Thermo-contact metamorphic rocks surrounding to diabase show "four high and two low" on log data, which is high natural gamma value, high self-potential anomaly, high neutron porosity, high interval transit-time and low density and low-resistance. Based on seismic, well log and logging data, spatial shape of Shang 741 igneous rock is described. 5. The methods of fracture prediction and recognition for fractured igneous reservoir are summarized. Adopting FMI image log and nuclear magnetic resonance log to quantitative analysis of fractured igneous reservoir and according to formation mechanism and shape of fracture, various fractures are recognized, such as high-angle fracture, low-angle fracture, vertical fracture, reticulated fracture, induced fracture, infilling fracture and corrosion vug. Shang 741 intrusive rock reservoir can be divided into pore-vug compound type, pore fracture type, micro-pore and micro-fracture type. Physical properties parameters of the reservoir are computed and single-well fracture model and reservoir parameters model are established. 6. Various comprehensive methods of fracture prediction and recognition for fractured igneous reservoir are put forward. Adopting three-element (igneous facies, fracture motion and rock bending) geologic comprehensive reservoir evaluation technique and deep-shallow unconventional laterolog constrained inversion technique, lateral prediction of fractured reservoir such as Shang 741 is taken and nonhomogeneity quantification models of reservoirs are established.
Resumo:
The main reservoir type in the south of Dagang Oilfield is alluvial reservoir. In this paper, the reservoir structure model and the distribution of connected body and flow barrier were built on base of the study of high-resolution sequential stratigraphic skeleton and fine sedimentary microfacies on level of single sandbody. Utilizing the static and dynamic data synthetically and carrying out the comparision of the classification method for reservoir flow unit in different reservoir, the criterion, which can be used to classify the flow unit in first section of Kongdian formation of Kongnan area, was defined. The qualitative method of well-to-well correlation and the quantitative method of conditional simulation using multiple data are adopted to disclose the oil and water moving regulation in different flow unit and the distribution rule of remaining oil by physical simulation measure. A set of flow unit study method was formed that is suit for the Dagang Oilfield on account of the remaining oil production according to the flow unit. Several outstanding progresses was obtained in the following aspects:It is considered that the reservoir structure of Zao V iow oil group- Zao Vup4 layerand are jigsaw-puzzled reservoir, while ZaoVup3-ZaoVupi layers are labyrinth reservoir,which are studied on base of high-resolution sequential stratigraphic skeleton on the levelof single sandbody in first section of Kongdian formation of Kongnan area and accordingto the study of fine sedimentary microfacies and fault sealeing.When classifying the flow unit, only permeability is the basic parameter using thestatic and dynamic data and, and also different parameters should be chose or deleted, suchas porosity, effective thickness, fluid viscosity and so on, because of the weak or stronginterlayer heterogeneous and the difference of interlayer crude oil character.The method of building predicting-model of flow unit was proposed. This methodis according to the theories of reservoir sedimentology and high-resolution sequencestratigraphic and adopts the quantitative method of well-to well correlation and the quantitative method of stochastic simulation using integrateddense well data. Finally the 3-D predicting-model of flow unit and the interlay er distribution model in flow unit were built which are for alluvial fan and fan delta fades in first section of Kongdian formation of Kongnan area, and nine genetic model of flow unit of alluvial environment that spread in the space were proposed.(4) Difference of reservoir microscopic pore configuration in various flow units and difference of flow capability and oil displacement effect were demonstrated through the physical experiments such as nuclear magnetic resonance (NMR), constant rate mercury penetration, flow simulation and so on. The distribution of remaining oil in this area was predicted combining the dynamic data and numerical modeling based on the flow unit. Remaining oil production measure was brought up by the clue of flow unit during the medium and late course of the oilfield development.
Resumo:
Manganese-modified mesoporous MCM-41 molecular sieves were synthesized at the absence of alkaline metal ions under mild alkaline condition using cetylpyridinium bromide surfactant as a template, and characterized with X-ray diffraction, N-2 adsorption, transmission electron microscopy, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) spectroscopies. The synthesized MnMCM-41 has a high pore volume of 1.30 cm(3) g(-1) with a corresponding surface area of 1510 m(2) g(-1). The ESR and Si-29 MAS NMR spectra revealed the presence of framework manganese ions in either the as-synthesized or calcined forms. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Zeolite KSO1 was successfully synthesized on calcined kaolin microspheres (ca. 60-80 mu m) in situ, and characterized by powder X-ray diffraction, scanning electronic microscopy and nuclear magnetic resonance spectroscopy.
Resumo:
Submitted to Appl Magn Reson Sponsorship: EPSRC / EU
Resumo:
Greaves, George; Sen, S., (2007) 'Inorganic glasses, glass-forming liquids and amorphizing solids', Advances in Physics 56(1) pp.1-166 RAE2008
Resumo:
Winter, Rudolf; Heitjans, P., (2001) 'Li+ Diffusion and its Structural Basis in the Nanocrystalline and Amorphous Forms of Two-dimensionally Ion-conducting LixTiS2', Journal of Physical Chemistry B 105(26) pp.6108-6115 RAE2008
Resumo:
Winter, Rudolf; Jones, A.R.; Florian, P.; Massiot, D., (2005) 'Tracing the reactive melting of glass-forming silicate batches by in situ Na-23 NMR', Journal of Physical Chemistry B 109(10) pp.4324-4332 RAE2008
Resumo:
Wydział Chemii
Resumo:
A convenient preparation of substituted benzoic acids from Grignard additions to solid carbon dioxide. Students create a library of carboxylic acids by using differentially substituted, commercially available aryl bromides, which can be used as the starting materials for a multistep synthesis. This is a modification and improvement of a very popular undergraduate organic chemistry experiment.