888 resultados para Newton, Willliam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.