961 resultados para Mixed methodology
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.
Resumo:
A new compound, [NH4](2)[Zn(phen)(3)](2)[Zn(phen)(2)(H2O)(2)][V16O38(Cl)] (.) 5H(2)O (1), was synthesized in the hydrothermal condition. The "naked" [V16O38(Cl)](8-) is the first observation with host shell structure in polyoxovanadate chemistry.
Resumo:
The coordination reactions during the solvent extraction of cerium(IV) and fluorine(l) from mixed nitric acid and hydrofluoric acid solutions by di-(2-ethylhexyl)-2-ethylhexylphosphonate, L (DEHEHP) in heptane have been investigated. The extraction data have been analyzed by graphical methods taking into account all plausible species extracted into the organic phase. Different variables influencing the extraction of Ce(IV), such as the concentrations of nitrate ions, hydrofluroric acid, nitric acid, and extractant have been studied. The results demonstrate that DEHEHP can extract not only Ce(NO3)(4) as Ce(NO3)4.2L and HF as HF (.) H2O (.) L, but both together as Ce(HF)(NO3)(4) (.) L. The extraction equilibrium equations are determined according to slope analysis and IR spectra. The equilibrium constants of the extracted complexes have been calculated, taking into account complexation between the metal ion and inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. It is also shown that boric acid, which was added into the mixed solutions to complex with F(I) is not extracted by DEHEHP, and neither does it affect the extraction of cerium(IV) and HF, nor change the extraction mechanism.
Resumo:
Tunable photonic crystals were prepared by infiltrating mixed liquids into the voids of silica opals. The stop bands of the tunable photonic crystals were continuously tuned by changing the relative refraction index contrast n(mix)/ns(pheres) of the spheres and the mixed liquids by varying the volume fraction of the component of the mixed liquids. The peak wavelengths of the stop band have a red shift as the refractive index of the mixed liquids increases. The transmittance at the stop band decreases with the increase of the refractive index contrast n(mix)/n(spheres). The larger the diameter of silica opals is, the wider the tunable range of the stop band is. The position and transmittance of the peak wavelength obtained by the photonic band calculations agreed very well with the experimental data.
Resumo:
Three new cage-like mixed-valent polyoxovanadates [Ni(1,10'-phen)(3)](2)[V10O26] 1, [Zn(2,2'-biPY)(3)](3)[V15O36Cl](.)3H(2)O (2) and [Co(2,2'-biPY)(3)](3)[V15O36Cl](.)3H(2)O (3) have been hydrothermally synthesized for the first time and characterized by elemental analyses, IR, EPR spectra, TG analyses and single crystal X-ray diffraction. The polyoxoanion of I exhibits an interesting empty ellipsoidal [V-2(IV) V-8(V) O-26](4-) 'host' shell, while the oxo vanadium clusters of 2 and 3 possess a spherical [V-8(IV) V-7(V) O36Cl](6-) cage with a Cl- ion encapsulated. The structure-directing role of organic templates (1,10'-phen and 2,2'-bipy) on the formation of the polyoxoanion structures is discussed.
Efficient synthesis of high-quality MCM-48 silicas through mixed surfactants and pH adjustment route
Resumo:
beta-Dioxodithioate were produced easily from active methenyl precursors, carbondisulfide and RX with potassium carbonate as base. By a selective basic assistant cleavage of a carbon-carbon bond at the beta-dicarbonyl unit of beta-dioxodithioate and the subsequent alkylation with RX/R'X in situ, single or mixed alpha-oxo ketene dithioacetals were, obtained in good yields.
Resumo:
The effect of LB monolayers on the mixed crystal was investigated by using X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), and Inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results show that LB monolayer has selectivity for the different nucleation ions with equal charge numbers and about the same ion radius. The selectivity is dependent on the head groups of monolayer. The monolayer and the doped ions have also an effect on the crystal morphology. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Perovskite oxides LaTi1-xMgxO3 (x = 0.25, 0.5) were synthesized using high-pressure and-temperature method. LaTi0.75Mg0.25O3 is a new compound. This new synthesis route has some advantages. XRD analysis showed that the x = 0.25 sample belongs to cubic perovskite-type structure and the a = 0.5 sample belongs to orthorhombic perovskite-type structure. EPR measurement indicated that Ti ions were in mixed valence state of +3 and +4. IR measurement indicated that the vibration frequency and width of BO6 octahedron stretching vibration absorption band decreases with the increasing of x. The valence state of Ti ions can be altered by high-pressure and-temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Electrochemical quartz crystal microbalance (EQCM) technique was used to measure the ion transfer in redox processes in electroactive organic thin films, such as self-assembled monolayer (SAM) (4-pyridyl hydroquinone, abbr. 4PHQ), multilayer based on SAM and conducting polymer film (here poly-(3,4-ethylenedioxythiophene), abbr. PEDOT). A mechanism of mixed ion transfer is developed and presented. Analysis of mixed ion transfer during redox processes successfully elucidates the deviation of oscillation frequency of the quartz crystal from theoretical expectation.
Resumo:
Various hydrotalcite based catalysts were prepared for catalytic removal of NO (NO reduction by CO). The general formula of hydrotalcite compounds (HTLc) was Co-Cu-Al-HTLc. Precalcination of these materials at 450 degrees C for NO reduction by CO, was necessary for catalytic activity. All catalysts except Co-A1 and Cu-Al have very good activity at lower temperature for NO reduction by CO. All samples were characterized by XRD and BET. The tentative reaction mechanism was also proposed.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
The dependence of the structure of the hosts on the M ion radius in MMgAl10O17 (M = Be, Mg, Ca, Sr, Ba, Pb, Eu, Mn, Fe, Co, Ni, Zn, Cd, Sn) system was studied and the luminescence of Eu2+ the mixed phase system was discussed. When M ion radius is less than 0.10 nm, the system MMgAl10O17 constructs by the mixed phases consisting of manegtoplumbite and spinel, alpha-alumina or spinel and alpha-alumina. In the mixed phase of manegtoplumbite and spinel and alpha-alumina, Eu2+ ion preferentially occupies lattice site of the cations in manegtoplumbite well matched with the radius and charge of Eu2+. There exists only d-->f transition emission of Eu2+ and no characteristic emission of Eu3+ occurs in those hosts. In the mixed phase of spinel and alpha-alumina, Eu2+ can enter the lattice site of Mg2+ ion or Al3+ ion and the d-->f and f-->f transition of Eu2+ can been observed respectively. Meanwhile, since the radius and charge of matrix lattice ions substituted by Eu2+ do not match with those of Eu2+, the valence state of Eu2+ is unstable. Eu2+ is partly changed into Eu3+ and the emission of Eu3+ is obviously observed even under the condition of reduction atmosphere. If reaction temperature is more than 1 150 degrees C, Al2O3 forms alpha-Al2O3 structure, the f-->f transition of Eu2+ appears. If reaction temperature is less than 1 150 degrees C, a mixed phase of alpha-Al2O3 and gamma-Al2O3 is formed, the f-->f transition of Eu2+ disappears and a new band emission from d-->f transition of Eu2+ occurs.