996 resultados para ION-CHAMBER
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, pion emission in heavy-ion collisions in the region 1 A GeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The in-medium dependence and Coulomb effects of pion production are included in the calculation. Total pion multiplicity and pi(-)/pi(+) yields are calculated for the reaction Au-197+(197) Au in central collisions for selected Skyrme parameters SkP, SLy6, Ska, SIII and compared with the measured data of the FOPI collaboration.
Resumo:
Within the hadronic transport model IBUU04, we study the density-dependent symmetry energy by using the neutron-proton differential flow from the Sn-132+Sn-124 reactions at beam energies of 200, 400, 600 and 800MeV per nucleon. The strong effect of the symmetry energy is shown at the incident beam energy of 400 MeV/A. The small medium-effect of the neutron-proton differential flow is also found. We also study the neutron-proton differential flows with impact parameters of 3, 5, 7 fm. It is found that in semi-central collisions the sensitivity of the neutron-proton differential flow to the symmetry energy is larger.
Resumo:
Amorphous SiO2 (a-SiO2) thin films were thermally grown on single-crystalline silicon. These a-SiO2/Si samples were first implanted (C-doped) with 100-keV carbon ion at room temperature (RT) at a dose of 5.0 x 10(17) C-ions/cm(2) and were then irradiated at RT by using 853 MeV Pb ions at closes of 5.0 x 10(11), 1.0 x 10(12), 2.0 x 10(12) and 5.0 x 10(12) Pb-ions/cm(2), respectively. The microstructures and the photoluminescence (PL) properties of these samples induced by Pb ions were investigated using fluorescence spectroscopy and transmission electron microscopy. We found that high-energy Pb-ion irradiation could induce the formation of a new phase and a change in the PL property of C-doped a-SiO2/Si samples. The relationship between the observed phenomena and the ion irradiation parameters is briefly discussed.
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
This paper presents an introduction to the application of ion traps and storage devices for cluster physics. Some experiments involving cluster ions in trapping devices such as Penning traps, Paul traps, quadrupole or multipole linear traps are briefly discussed. Electrostatic ion storage rings and traps which allow for the storage of fast ion beams without mass limitation are presented as well. We also report on the recently developed mini-ring, a compact electrostatic ion storage ring for cluster, molecular and biomolecular ion studies.
Resumo:
In collisions between slow F2+ ions (30 keV) and molecular targets, adenine, scattered particle production yields have been measured directly by simultaneous detection of neutrals, positive and negative ions. The relative cross-section for a negative ion formation channel was measured to be 1%. Despite a slight decrease compared to a larger target, the fullerene C-60, the measured negative ion formation cross section is still at least one order of magnitude larger than the yield in ion-atom interactions.
Resumo:
We present an efficient method to generate a ultrashort attosecond (as) pulse when a model He+ ion is exposed to the combination of an intense few-cycle chirped laser pulse and its 27th harmonics. By solving the time-dependent Schroumldinger equation, we found that high-order harmonic generation (HHG) from He+ ion is enhanced by seven orders of magnitude due to the presence of the harmonic pulse. After optimizing the chirp of the fundamental pulse, we show that the cut-off energy of the generated harmonics is extended effectively to I-p+25.5U(p). As a result, an isolated 26-as pulse with a bandwidth of 170.5 eV can be obtained directly from the supercontinuum around the cut-off of HHG. To better understand the physical origin of HHG enhancement and attosecond pulse emission, we perform semiclassical simulations and analyze the time-frequency characteristics of attosecond pulse.
Resumo:
Purpose: To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. Materials and methods: The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). Results: The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. Conclusions: These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.
Resumo:
Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given
Resumo:
Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose C-12(6+) ion or Co-60 gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F(1) hybrid strain male mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray. Moreover, the effects were more obvious in the group irradiated by C-12(6+) ion than in that irradiated by Co-60 gamma-ray. Pre-exposure with low-dose C-12(6+) ion or Co-60 gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Resumo:
Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.
Resumo:
In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).
Resumo:
Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.