937 resultados para Hazardous waste disposal in the ground


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Succession was already studied over decades. The present thesis investigated the succession on hard substrate at two different study sites within the fjord Comau, Chile. Nine plates were installed at both sites (mouth of fjord and inner fjord) and photographed over three years. Additionally the natural community was recorded and a ground truthing was carried out to verify the analyzed species. Respectively at both sites over 50 different species were identified. Abundance data decreased with only one exception continuously, whereas the percentage cover increased. But the communities on the recruitment plates do still not reach the community structure of the natural environment. The present data showed that the hard-bottom succession in the fjord Comau is best described by the TOLERANCE MODEL (Connell & Slatyer, 1977). An important species of the natural community is the stony coral Desmophyllum dianthus, which normally (outside the fjord) grows beneath 1000 m water depth. The results of this work indicate that the mature community is not reached after 36 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains a time series of plant height measurements (vegetative and reproductive) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In addition, data on species specific plant heights for the main experiment are available from 2002. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Plant height was recorded, generally, twice a year just before biomass harvest (during peak standing biomass in late May and in late August). Methodologies of measuring height have varied somewhat over the years. In earlier year the streched plant height was measured, while in later years the standing height without streching the plant was measured. Vegetative height was measured either as the height of the highest leaf or as the length of the main axis of non-flowering plants. Regenerating height was measured either as the height of the highest flower on a plant or as the height of the main axis of flowering. Sampled plants were either randomly selected in the core area of plots or along transects in defined distances. For details refer to the description of individual years. Starting in 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details in the general description of the Jena Experiment) were sampled. 2. Species specific plant height was recorded two times in 2002: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.