906 resultados para General Linear Methods
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
L’augmentation de la population âgée dans la société indique que les systèmes de soins de la santé font face à de nouveaux défis. Les hauts niveaux d’incapacité qui en résultent peuvent être réduits par les nouvelles technologies, la promotion de la santé ainsi que des stratégies de prévention. Les écrits scientifiques récents soulignent la supériorité des prothèses dentaires implanto-portées par rapport aux prothèses conventionnelles en termes de satisfaction et de qualité de la vie des patients. Cependant, il n'est toujours pas clair si ces avantages ont des effets positifs à long terme sur la santé orale et générale ainsi que sur la qualité de vie des populations âgées. Objectifs, Hypothèses : Notre but était de mesurer l’impact des prothèses mandibulaires retenues par 2 implants sur la qualité de vie associée à la santé bucco-dentaire et générale ainsi que sur la santé orale et la qualité du sommeil des aînés édentés. Nous avons évalué les hypothèses nulles suivantes : il n'y a aucune différence entre les individus portants des prothèses mandibulaires retenues par 2 implants (IODs) et ceux qui portent des prothèses conventionnelles (CDs), par rapport à la qualité de vie reliée à la santé bucco-dentaire et générale, la santé orale et la qualité du sommeil, un an après avoir reçu leurs nouvelles prothèses. Méthodes : Dans cette étude randomisée contrôlée, 255 aînés ont reçu au hasard IODs ou les CDs, les deux types de prothèses étant opposés à des prothèses maxillaires conventionnelles. La qualité de la vie reliée à la santé bucco-dentaire (OHRQoL) et la santé générale subjective ont été mesurées avec les questionnaires Oral Health Impact Profile (OHIP-20) et Short Form-36 (SF-36) en condition pré-traitement et après un an. La qualité du sommeil et la somnolence diurne ont été mesurées à l’aide du questionnaire Qualité de Sommeil de Pittsburg et de l'Échelle de Somnolence Epworth. La santé orale a été évaluée par un examen clinique. Les variables indépendantes étaient le sens de cohérence et le type de prosthèse, ainsi que des variables socio-démographiques. En utilisant des analyses statistiques bi et multi-factorielles, des comparaisons à l’intérieur d’un même groupe et entre deux groupes ont été effectuées. Résultats : Les différences pré et post traitement pour les cotes OHIP étaient significativement plus grandes pour le groupe IOD que le groupe CD (p<0.05). Le type de traitement et la cote pré-traitement étaient des facteurs significatifs à OHRQoL (p < 0.0001). Dans le groupe CD, il y avait une diminution significative par rapport aux cotes de «Physical Component Scores (PCS)», le fonctionnement physique, le rôle physique et la douleur physique entre les données pré-traitement et un an après le traitement, ce qui indique une diminution au niveau de la santé générale subjective. Dans le groupe IOD, une diminution statistiquement non significative a été remarquée par rapport à toutes les cotes des sous-échelles de SF-36, sauf pour la douleur physique. Le modèle final de régression a démontré qu’après ajustement pour les variables âge, sexe, statut marital et type de traitement, la cote totale finale d’OHIP et les données de bases de PCS prédisaient la cote finale de PCS (p < 0.0001). Aucune corrélation significative entre sens de cohérence et OHRQoL n'a été détectée (r =-0.1; p > 0.05). Les aînés porteurs des prothèses conventionnelles avaient presque 5 fois plus de chance d’avoir une stomatite prothétique que ceux portant des prothèses mandibulaires hybrides retenues par 2 implants (p < 0.0001). Les aînés ayant subjectivement une mauvaise santé générale avaient une qualité de sommeil moins bonne que ceux avec une meilleure santé générale subjective (p < 0.05). Les personnes qui avaient une OHRQoL moins bonne étaient presque 4 fois plus somnolentes pendant le jour que celles avec une meilleure OHRQoL (p=0.003, χ2; OR =3.8 CI 1.5 to 9.8). L'analyse de régression a montré que la santé générale subjective et OHRQoL prévoient la qualité du sommeil (p=0.022 et p=0.001, respectivement) et la somnolence diurne (p=0.017 et p=0.005, respectivement). Conclusions: Les résultats de cette étude suggèrent que, chez les aînés édentés, des prothèses mandibulaires hybrides retenues par deux implants amènent une amélioration significative de la qualité de vie reliée à la santé bucco-dentaire et maintiennent la sensation d’une meilleure santé physique. Des prothèses hybrides implanto-portées peuvent contribuer à la santé orale en réduisant les traumatismes infligés à la muqueuse orale et en contrôlant la stomatite prothétique. Les aînés édentés dont le niveau de qualité de vie reliée à la santé bucco-dentaire est bas, peuvent aussi avoir des troubles de qualité du sommeil.
Resumo:
Les pratiques relationnelles de soin (PRS) sont au cœur même des normes et valeurs professionnelles qui définissent la qualité de l’exercice infirmier, mais elles sont souvent compromises par un milieu de travail défavorable. La difficulté pour les infirmières à actualiser ces PRS qui s’inscrivent dans les interactions infirmière-patient par un ensemble de comportements de caring, constitue une menace à la qualité des soins, tout en créant d’importantes frustrations pour les infirmières. En mettant l’accent sur l’aspect relationnel du processus infirmier, cette recherche, abordée sous l'angle du caring, renvoie à une vision novatrice de la qualité des soins et de l'organisation des services en visant à expliquer l’impact du climat organisationnel sur le façonnement des PRS et la satisfaction professionnelle d’infirmières soignantes en milieu hospitalier. Cette étude prend appui sur une adaptation du Quality-Caring Model© de Duffy et Hoskins (2003) qui combine le modèle d’évaluation de la qualité de Donabedian (1980, 1992) et la théorie du Human Caring de Watson (1979, 1988). Un devis mixte de type explicatif séquentiel, combinant une méthode quantitative de type corrélationnel prédictif et une méthode qualitative de type étude de cas unique avec niveaux d’analyse imbriqués, a été privilégié. Pour la section quantitative auprès d’infirmières soignantes (n = 292), différentes échelles de mesure validées, de type Likert ont permis de mesurer les variables suivantes : le climat organisationnel (global et cinq dimensions composites) ; les PRS privilégiées ; les PRS actuelles ; l’écart entre les PRS privilégiées et actuelles ; la satisfaction professionnelle. Des analyses de régression linéaire hiérarchique ont permis de répondre aux six hypothèses du volet quantitatif. Pour le volet qualitatif, les données issues des sources documentaires, des commentaires recueillis dans les questionnaires et des entrevues effectuées auprès de différents acteurs (n = 15) ont été traités de manière systématique, par analyse de contenu, afin d’expliquer les liens entre les notions d’intérêts. L’intégration des inférences quantitatives et qualitatives s’est faite selon une approche de complémentarité. Nous retenons du volet quantitatif qu’une fois les variables de contrôle prises en compte, seule une dimension composite du climat organisationnel, soit les caractéristiques de la tâche, expliquent 5 % de la variance des PRS privilégiées. Le climat organisationnel global et ses dimensions composites relatives aux caractéristiques du rôle, de l’organisation, du supérieur et de l’équipe sont de puissants facteurs explicatifs des PRS actuelles (5 % à 11 % de la variance), de l’écart entre les PRS privilégiées et actuelles (4 % à 9 %) ainsi que de la satisfaction professionnelle (13 % à 30 %) des infirmières soignantes. De plus, il a été démontré, qu’au-delà de l’important impact du climat organisationnel global et des variables de contrôle, la fréquence des PRS contribue à augmenter la satisfaction professionnelle des infirmières (ß = 0,31 ; p < 0,001), alors que l’écart entre les PRS privilégiées et actuelles contribue à la diminuer (ß = - 0,30 ; p < 0,001) dans des proportions fort similaires (respectivement 7 % et 8 %). Le volet qualitatif a permis de mettre en relief quatre ordres de facteurs qui expliquent comment le climat organisationnel façonne les PRS et la satisfaction professionnelle des infirmières. Ces facteurs sont: 1) l’intensité de la charge de travail; 2) l’approche d’équipe et la perception du rôle infirmier ; 3) la perception du supérieur et de l’organisation; 4) certaines caractéristiques propres aux patients/familles et à l’infirmière. L’analyse de ces facteurs a révélé d’intéressantes interactions dynamiques entre quatre des cinq dimensions composites du climat, suggérant ainsi qu’il soit possible d’influencer une dimension en agissant sur une autre. L’intégration des inférences quantitatives et qualitatives rend compte de l’impact prépondérant des caractéristiques du rôle sur la réalisation des PRS et la satisfaction professionnelle des infirmières, tout en suggérant d’adopter une approche systémique qui mise sur de multiples facteurs dans la mise en oeuvre d’interventions visant l’amélioration des environnements de travail infirmier en milieu hospitalier.
Resumo:
Les logiciels utilisés sont Splus et R.
Resumo:
Cette thèse est composée de trois essais en économie forestière. Les deux premiers s'intéressent à la fixation de la redevance optimale à laquelle fait face le propriétaire d'une ressource forestière dans un contexte d'information asymétrique. Le troisième analyse l'impact à long terme du recyclage sur la surface de terre affectée à la forêt. La gestion des ressources forestières implique souvent la délégation des droits de coupe par le propriétaire forestier à une entreprise exploitante. Cette délégation prend la forme d'un contrat de concession par lequel le propriétaire forestier octroie les droits d'exploitation aux compagnies forestières, en contrepartie d'une redevance (transfert monétaire). L'octroie des droits d'exploitation s'effectue généralement sous plusieurs modes, dont les plus répandus sont les appels d'offres publics et les contrats de gré à gré, où le propriétaire forestier et la firme exploitante spécifient entre autres la redevance dans les clauses d'exploitation de la forêt. Pour déterminer le mécanisme optimal (choix de la firme, âge de coupe et redevance), le propriétaire forestier a idéalement besoin de connaître les coûts de coupe et de reboisement. Or en réalité, les firmes sont mieux informées sur leurs coûts que le propriétaire forestier. Dans ce contexte d'information asymétrique, le mécanisme optimal doit donc prendre en considération des contraintes informationnelles. Les deux premiers essais caractérisent, sous ces conditions, l'âge de coupe optimal (la rotation optimale) et la redevance optimale. Le premier essai examine le contrat optimal quand le propriétaire forestier cède les droits de coupes à une firme par un accord de gré à gré ou par une procédure d'appel d'offre public au second prix. L'analyse du problème est menée premièrement dans un contexte statique, dans le sens que les coûts de coupe sont parfaitement corrélés dans le temps, puis dans un contexte dynamique, où les coûts sont indépendants dans le temps. L'examen en statique et en dynamique montre que la rotation optimale va satisfaire une version modifiée de la règle de Faustmann qui prévaudrait en information symétrique. Cette modification est nécessaire afin d'inciter la firme à révéler ses vrais coûts. Dans le cas statique, il en résulte que la rotation optimale est plus élevée en information asymétrique qu'en situation de pleine information. Nous montrons également comment le seuil maximal de coût de coupe peut être endogénéisé, afin de permettre au propriétaire d'accroître son profit espéré en s'assurant que les forêts non profitables ne seront pas exploitées. Nous comparons ensuite la redevance optimale en information asymétrique et symétrique. Les redevances forestières dans un arrangement de gré à gré étant généralement, en pratique, une fonction linéaire du volume de bois, nous dérivons le contrat optimal en imposant une telle forme de redevance et nous caractérisons la perte en terme de profit espéré qui résulte de l'utilisation de ce type de contrat plutôt que du contrat non linéaire plus général. Finalement, toujours dans le contexte statique, nous montrons à travers un mécanisme optimal d'enchère au second prix qu'en introduisant ainsi la compétition entre les firmes le propriétaire forestier augmente son profit espéré. Les résultats obtenus dans le contexte dynamique diffèrent pour la plupart de ceux obtenus dans le cas statique. Nous montrons que le contrat optimal prévoit alors que chaque type de firme, incluant celle ayant le coût le plus élevé, obtient une rente strictement positive, laquelle augmente dans le temps. Ceci est nécessaire pour obtenir la révélation à moindre coût à la période courante du véritable type de la firme. Comme implication, la rotation optimale s'accroît aussi dans le temps. Finalement, nous montrons qu'il y a distorsion en asymétrique d'information par rapport à l'optimum de pleine information même pour le coût le plus bas (la réalisation la plus favorable). La concurrence introduite dans le premier essai sous forme d'enchère au second prix suppose que chaque firme connaît exactement son propre coût de coupe. Dans le deuxième essai nous relâchons cette hypothèse. En réalité, ni le propriétaire forestier ni les firmes ne connaissent avec précision les coûts de coupe. Chaque firme observe de manière privée un signal sur son coût. Par exemple chaque firme est autorisée à visiter un lot pour avoir une estimation (signal) de son coût de coupe. Cependant cette évaluation est approximative. Ainsi, le coût de chaque firme va dépendre des estimations (signaux) d'autres firmes participantes. Nous sommes en présence d'un mécanisme à valeurs interdépendantes. Dans ce contexte, la valeur d'une allocation dépend des signaux de toutes les firmes. Le mécanisme optimal (attribution des droits d'exploitation, redevance et âge de coupe) est exploré. Nous déterminons les conditions sous lesquelles le mécanisme optimal peut être implémenté par une enchère au second prix et dérivons la rotation optimale et le prix de réserve dans le contexte de ce type d'enchère. Le troisième essai de la thèse analyse l'impact à long terme du recyclage sur la surface de terre affectée à la forêt. L'un des principaux arguments qui milite en faveur du recours au recyclage est que cela entraînerait une réduction de la coupe de bois, épargnant ainsi des arbres. L'objectif est donc d'aboutir à un nombre d'arbres plus important qu'en l'absence de recyclage. L'idée d'accroître le stock d'arbre tient au fait que les forêts génèrent des externalités: elles créent un flux de services récréatifs, freinent l'érosion des sols et des rives des cours d'eau et absorbent du dioxyde de carbone présent dans l'atmosphère. Étant donné la présence d'externalités, l'équilibre des marchés résulterait en un nombre d'arbre insuffisant, justifiant donc la mise en oeuvre de politiques visant à l'accroître. Le but de ce troisième essai est de voir dans quelle mesure la promotion du recyclage est un instrument approprié pour atteindre un tel objectif. En d'autres mots, comment le recyclage affecte-t-il à long terme la surface de terre en forêt et l'âge de coupe? Nous étudions cette question en spécifiant un modèle dynamique d'allocation d'un terrain donné, par un propriétaire forestier privé, entre la forêt et une utilisation alternative du terrain, comme l'agriculture. Une fois les arbres coupés, il décide d'une nouvelle allocation du terrain. Il le fait indéfiniment comme dans le cadre du modèle de Faustmann. Le bois coupé est transformé en produit final qui est en partie recyclé comme substitut du bois original. Ainsi, les outputs passés affectent le prix courant. Nous montrons que, paradoxalement, un accroissement du taux de recyclage réduira à long terme la surface forestière et donc diminuera le nombre d'arbres plantés. Par contre l'âge de coupe optimal va s'accroître. L'effet net sur le volume de bois offert sur le marché est ambigu. Le principal message cependant est qu'à long terme le recyclage va résulter en une surface en forêt plus petite et non plus grande. Donc, si le but est d'accroître la surface en forêt, il pourrait être préférable de faire appel à d'autres types d'instruments de politique que celui d'encourager le recyclage.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.