977 resultados para Binary choice models
Resumo:
"A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"
Resumo:
Risk management is of paramount importance in the success of tunnelling works and is linked to the tunnelling method and to the constraints of the works. Sequencial Excavation Method (SEM) and Tun-nel Boring Machine (TBM) method have been competing for years. This article, part of a wider study on the influence of the â Safety and Healthâ criterion in the choice of method, reviews the existing literature about the criteria usually employed to choose the tunnelling method and on the criterion â Safety and Healthâ . This crite-rion is particularly important, due to the financial impacts of work accidents and occupational diseases. This article is especially useful to the scientific and technical community, since it synthesizes the relevance of each one of the choice criteria used and it shows why â Safety and Healthâ must be a criterion in the decision mak-ing process to choose the tunnelling method.
Resumo:
The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.
Resumo:
Dissertação de Mestrado em MPA – Administração Pública
Resumo:
Este proyecto propone extender y generalizar los procesos de estimación e inferencia de modelos aditivos generalizados multivariados para variables aleatorias no gaussianas, que describen comportamientos de fenómenos biológicos y sociales y cuyas representaciones originan series longitudinales y datos agregados (clusters). Se genera teniendo como objeto para las aplicaciones inmediatas, el desarrollo de metodología de modelación para la comprensión de procesos biológicos, ambientales y sociales de las áreas de Salud y las Ciencias Sociales, la condicionan la presencia de fenómenos específicos, como el de las enfermedades.Es así que el plan que se propone intenta estrechar la relación entre la Matemática Aplicada, desde un enfoque bajo incertidumbre y las Ciencias Biológicas y Sociales, en general, generando nuevas herramientas para poder analizar y explicar muchos problemas sobre los cuales tienen cada vez mas información experimental y/o observacional.Se propone, en forma secuencial, comenzando por variables aleatorias discretas (Yi, con función de varianza menor que una potencia par del valor esperado E(Y)) generar una clase unificada de modelos aditivos (paramétricos y no paramétricos) generalizados, la cual contenga como casos particulares a los modelos lineales generalizados, no lineales generalizados, los aditivos generalizados, los de media marginales generalizados (enfoques GEE1 -Liang y Zeger, 1986- y GEE2 -Zhao y Prentice, 1990; Zeger y Qaqish, 1992; Yan y Fine, 2004), iniciando una conexión con los modelos lineales mixtos generalizados para variables latentes (GLLAMM, Skrondal y Rabe-Hesketh, 2004), partiendo de estructuras de datos correlacionados. Esto permitirá definir distribuciones condicionales de las respuestas, dadas las covariables y las variables latentes y estimar ecuaciones estructurales para las VL, incluyendo regresiones de VL sobre las covariables y regresiones de VL sobre otras VL y modelos específicos para considerar jerarquías de variación ya reconocidas. Cómo definir modelos que consideren estructuras espaciales o temporales, de manera tal que permitan la presencia de factores jerárquicos, fijos o aleatorios, medidos con error como es el caso de las situaciones que se presentan en las Ciencias Sociales y en Epidemiología, es un desafío a nivel estadístico. Se proyecta esa forma secuencial para la construcción de metodología tanto de estimación como de inferencia, comenzando con variables aleatorias Poisson y Bernoulli, incluyendo los existentes MLG, hasta los actuales modelos generalizados jerárquicos, conextando con los GLLAMM, partiendo de estructuras de datos correlacionados. Esta familia de modelos se generará para estructuras de variables/vectores, covariables y componentes aleatorios jerárquicos que describan fenómenos de las Ciencias Sociales y la Epidemiología.
Resumo:
Los caracteres de historia de vida son sensibles a la variación histórica o actual de los factores ambientales. Estudiar dicha variabilidad mediante la realización de estudios comparativos permite obtener evidencias sobre las causas de la evolución de ciertos caracteres. Los lagartos son excelentes modelos para el estudio de selección sexual y evolución del comportamiento social y reproductivo debido a que su relativa baja dispersión podría tener consecuencias evolutivas profundas en el desarrollo de distintas estrategias, ya que las poblaciones, al encontrarse más aisladas, podrían verse influenciadas por las fuerzas selectivas locales, mostrando una alta heterogeneidad espacial y temporal. Por eso nos propusimos realizar este trabajo para evaluar si existen diferentes estrategias reproductivas en los lagartos del género Tupinambis en distintos contextos ecológicos de la provincia de Córdoba. Para ello analizaremos distintas características de la historia de vida en poblaciones de estas especies tales como estructura de tamaño, sexo operativo, frecuencia reproductiva, tamaño de camada, condición corporal reproductiva, tamaño de madurez sexual, características espermáticas, elección de sitios de nidificación, etc. Además analizaremos la estructura genética de las poblaciones para inferir procesos demográficos históricos y patrones actuales de flujo génico y conectividad. The life history traits are sensitive to historical or current variation of environmental factors. Studying this variability by performing comparative studies allows obtaining evidence on the causes of the evolution of certain characters. Lizards are excellent models for studying sexual selection and evolution of social and reproductive behavior because their relatively low dispersal capabilities could have profound evolutionary consequences in the development of different strategies, since isolated populations may be stronger influenced by local selective forces, showing a high spatial and temporal heterogeneity. We decided to perform this study to assess whether there are different reproductive strategies in lizards of the genus Tupinambis in different ecological contexts of the Cordoba province. We will analyze different life history traits in populations of these species such as size structure, operational sex ratio, reproductive frequency, litter size, body condition, size at sexual maturity, sperm characteristics, choice of nesting sites, etc.. We also analyzed the genetic structure of populations to infer historical demographic processes and current patterns of gene flow and connectivity.
Resumo:
Data Mining, Learning from data, graphical models, possibility theory
Resumo:
Systemidentification, evolutionary automatic, data-driven model, fuzzy Takagi-Sugeno grammar, genotype interpretability, toxicity-prediction
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2012
Resumo:
Introduction: Although diuretics are mainly used for the treatment of acute decompensated heart failure (ADHF), inadequate responses and complications have led to the use of extracorporeal ultrafiltration (UF) as an alternative strategy for reducing volume overloads in patients with ADHF. Objective: The aim of our study is to perform meta-analysis of the results obtained from studies on extracorporeal venous ultrafiltration and compare them with those of standard diuretic treatment for overload volume reduction in acute decompensated heart failure. Methods: MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases were systematically searched using a pre‑specified criterion. Pooled estimates of outcomes after 48 h (weight change, serum creatinine level, and all-cause mortality) were computed using random effect models. Pooled weighted mean differences were calculated for weight loss and change in creatinine level, whereas a pooled risk ratio was used for the analysis of binary all-cause mortality outcome. Results: A total of nine studies, involving 613 patients, met the eligibility criteria. The mean weight loss in patients who underwent UF therapy was 1.78 kg [95% Confidence Interval (CI): −2.65 to −0.91 kg; p < 0.001) more than those who received standard diuretic therapy. The post-intervention creatinine level, however, was not significantly different (mean change = −0.25 mg/dL; 95% CI: −0.56 to 0.06 mg/dL; p = 0.112). The risk of all-cause mortality persisted in patients treated with UF compared with patients treated with standard diuretics (Pooled RR = 1.00; 95% CI: 0.64–1.56; p = 0.993). Conclusion: Compared with standard diuretic therapy, UF treatment for overload volume reduction in individuals suffering from ADHF, resulted in significant reduction of body weight within 48 h. However, no significant decrease of serum creatinine level or reduction of all-cause mortality was observed.
Resumo:
experimental design, mixed model, random coefficient regression model, population pharmacokinetics, approximate design
Resumo:
Recruitment, high potentials, job choice, relationship marketing, employer image, trust, familiarity, segmentation, logistic regression, structural equation models
Resumo:
AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.