893 resultados para Base Erosion and Profit Shifting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithology of the buried hill of Triassic Budate group in Beier depression is epimetamorphic clastic rock and volcanic clastic rock stratum. Recently the favorable hydrocarbon show was discovered in buried hill of base rock, and large-duty industrial oil stream was obtained in some wells in Beier depression. Based on the information of seismos and wells, the tectonic framework, tectonic deformation times and faulted system of the Beier depression are comprehensively studied, then configuration, evolutional history, genetic type and distributed regularity of buried hill are defined. According to observing description and analysis of core sample, well logging and interpretive result of FMI, the lithological component, diagenetic type and diagenetic sequence of buried hill reservoir are confirmed, then reservoir space system of buried hill is distinguished, and vegetal feature, genetic mechanism and distributed regularity of buried hill fissure are researched, at the same time the quantitative relationship is build up between core fissures and fissures interpreted by FMI. After that fundamental supervisory action of fault is defined to the vegetal degree of fissure, and the fissure beneficial places are forecasted using fractal theory and approach. At last the beneficial areas of Budate group reservoir are forecasted by reservoir appraisal parameters optimization such as multivariate gradually regression analysis et. al. and reservoir comprehensive appraisal method such as weighing analyze and clustering procedure et. al. which can provide foundation for the next exploratory disposition. Such production and knowledge are obtained in this text as those: 1. Four structural layers and two faulting systems are developed, and four structural layers are carved up by three bed succession boundary surfaces which creates three tectonic distortional times homology. Three types of buried hill are divided, they are ancient physiognomy buried hill, epigenetic buried hill, and contemporaneous buried hill. 2. Reservoir space of Budate buried hill is mainly secondary pore space and fissure, which distributes near the unconformity and/or inside buried hill in sections. The buried hill reservoir experienced multi-type and multi-stage diagenetic reconstruction, which led to the original porosity disappeared, and multi secondary porosity was created by dissolution, superficial clastation and cataclasis et. al. in diagenetic stage, which including middle crystal pore, inter crystal pore, moldic pore, inter particle emposieu, corrosion pore space and fissure et. al. which improved distinctly reservoir capability of buried hill. 3. The inner reservoir of buried hill in Beier depression is not stratigraphic bedded construction, but is fissure developing place formed by inner fault and broken lithogenetic belt. The fissures in inner reservoir of buried hill are developed unequally with many fissure types, which mainly are high angle fissure and dictyonal fissures and its developing degree and distribution is chiefly controlled by faulting. 4. The results of reservoir comprehensive evaluate and reservoir predicting indicates that advantageous areas of reservoir of buried hill chiefly distributes in Sudeerte, Beixi and Huoduomoer, which comprehensive evaluate mainly Ⅱand Ⅲ type reservoir. The clues and results of this text have directive significance for understanding the hydrocarbon reservoir condition of buried hill in Beier depression, for studying hydrocarbon accumulated mechanism and distributed regularity, and for guiding oil and gas exploration. The results of this text also can enrich and improve nonmarine hydrocarbon accumulated theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The karsrt erosion engineering geology became a highlight problem in recent years, in particularly, the karst erosion of marlite of Badong formation made the rock mechanics weaken in Three Gorges Reservoir area, which reduces the safety of slope. During the immigrant construction, many high slopes have been formed, whose instabilities problems pose serious threats to the safety of the people and properties. The accidents of the slope failure take place now and then. By testing, it has been found that the karst erosion pattern and dissolution rate of marlite are not weaker than that of the pure limestone. Furthermore, owning to the weathering and unloading, the karst erosion of the marlite will reach certain depth of the slope, which is named infiltrated karst erosion. The karst erosion made the rock mass quality of slope or foundation worse in a large scale. The karst erosion geological disasters, taken place or not, has become the main restrictive factors to the social stability and economic development. Thus the karst erosion process and mechanism of marlite of Badong formation are studied as the main content of this dissertation. The weakening characteristic of rock mass mechanics parameters are studied along with the rock mass structure deformation and failure processes in the course of the karst erosion. At first, the conditions and influencing factors of the karst erosion are analyzed in the investigative region, on the basis of different karst erosion phenomenon of the marlite and different failure modes of slope. Then via indoor the karst erosion tests, it is analyzed that the karst erosion will change the rock mass composition and its structure. Through test, the different karst erosion phenomena between micro and macro have been observed, and the karst erosion mechanism of the marlite has been summarized. Damage theory is introduced to explain the feature of dissolution pore and the law of crack propagation in the marlite. By microscope and the references data, it can be concluded that the karst erosion process can be divided into rock minerals damage and rock structural damage. And the percent of karst erosion volume is named damage factor, which can be used to describe the quantify karst erosion degree of marlite. Through test, the rock mechanical properties in the different period of karst erosion are studied. Based on the damage mechanics theory and the test result, the relation between the karst erosion degree of marlite and weakening degree of mechanical properties is summarized. By numerical simulations, the karst erosive rock mass mechanics is verified. The conclusion is drawn as below: to the rock mass of marlite, the karst erosion damage made mechanics parameters variation, the deformation modulus, cohesion, and inter friction angle reduce as the negative exponent with the increasing of the karst erosion volume, however, the Poisson ratio increases as the positive exponent with the karst erosion volume increasing. It should be noticed that the deduced formulations are limited to the test data and certain conditions. It is suitable to the rock mass parametric weakening process after the karst erosion of marlite in Three Gorges Reservoir area. Based on the failure types of marlite slope in the field, the karst erosion and weathering process of rock mass are analyzed. And the evolution law of deformation and failure of the marlite mass is studied. The main failure feature of the marlite slope is the karst erosive structure subsidence mode in Three Gorges Reservoir area. The karst erosive structure subsidence mode is explained as follows: the rock mass undergoes the synthetic influence, such as weathering, unloading, corrosion, and so on, many pores and cavities have been formed in the rock mass interior, the rock mass quality is worsen and the rock mass structure is changed, and then the inherent structure of rock mass is collapsed under its gravity, therefore, the failure mode of compaction and subsidence take place. Finally, two examples are used to verify the rock mass parameters in Three Gorges Reservoir area, and the relationship between the marlite slope stability and the time of karst erosion is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The space currents definitely take effects on electromagnetic environment and also are scientific highlight in the space research. Space currents as a momentum and energy provider to Geospace Storm, disturb the varied part of geomagnetic field, distort magnetospheric configuration and furthermore take control of the coupling between magnetosphere and ionosphere. Due to both academic and commercial objectives above, we carry on geomagnetic inverse and theoretical studies about the space currents by using geomagnetic data from INTERMAGNET. At first, we apply a method of Natural Orthogonal Components (NOC) to decomposition the solar daily variation, especially for (solar quiet variation). NOC is just one of eign mode analysis, the most advantage of this method is that the basic functions (BFs) were not previously designated, but naturally came from the original data so that there are several BFs usually corresponding to the process really happened and have more physical meaning than the traditional spectrum analysis with the fixed BFs like Fourier trigonometric functions. The first two eign modes are corresponding to the and daily variation and their amplitudes both have the seasonal and day-to-day trend, that will be useful for evaluating geomagnetic activity indices. Because of the too strict constraints of orthogonality, we try to extend orthogonal contraints to the non-orthogonal ones in order to give more suitable and appropriate decomposition of the real processes when the most components did not satisfy orthogonality. We introduce a mapping matrix which can transform the real physical space to a new mathematical space, after that process, the modified components which associated with the physical processes have satisfied the orthogonality in the new mathematical space, furthermore, we can continue to use the NOC decomposition in the new mathematical space, and then all the components inversely transform back to original physical space, so that we would have finished the non-orthogonal decomposition which more generally in the real world. Secondly, geomagnetic inverse of the ring current’s topology is conducted. Configurational changes of the ring current in the magnetosphere lead to different patterns of disturbed ground field, so that the global configuration of ring current can be inferred from its geomagnetic perturbations. We took advantages of worldwide geomagnetic observatories network to investigate the disturbed geomagnetic field which produced by ring current. It was found that the ring current was not always centered at geomagnetic equator, and significantly deviated off the equator during several intense magnetic storms. The deviation owing to the tilting and latitudinal shifting of the ring current with respect to the earth’s dipole can be estimated from global geomagnetic survey. Furthermore those two configurational factors which gave a quantitative description of the ring current configuration, will be helpful to improve the Dst calibration and understand the dependence of ring current’s configuration on the plasma sheet location relative to the equator when magnetotail field warped. Thirdly, the energization and physical acceleration process of ring current during magnetic storm has been proposed. When IMF Bz component increase, the enhanced convection electric field drive the plasma injection into the inner magnetosphere. During the transport process, a dynamic heating is happened which make the particles more ‘hot’ when the injection is more deeply inward. The energy gradient along the injection path is equivalent to a kind of force, which resist the plasma more earthward injection, as a diamagnetic effect of the magnetosphere anti and repellent action to the exotically injected plasma. The acceleration efficiency has a power law form. We use analytical way to quantitatively describe the dynamical process by introducing a physical parameter: energization index, which will be useful to understand how the particle is heated. At the end, we give a scheme of how to get the from storm time geomagnetic data. During intense magnetic storms, the lognormal trend of geomagnetic Dst decreases depend on the heating dynamic of magnetosphere controlling ring current. The descending pattern of main phase is governed by the magnetospheric configuration, which can be describled by the energization index. The amplitude of Dst correlated with convection electric field or south component of the solar wind. Finally, the Dst index is predicted by upstream solar wind parameter. As we known space weather have posed many chanllenges and impacts on techinal system, the geomagnetic index for evaluating the activity space weather. We review the most popular Dst prediction method and repeat the Dst forecasting model works. A concise and convnient Key Points model of the polar region is also introduced to space weather. In summary, this paper contains some new quantitative and physical description of the space currents with special focus on the ring current. Whatever we do is just to gain a better understanding of the natural world, particularly the space environment around Earth through analytical deduction, algorithm designing and physical analysis, to quantitative interpretation. Applications of theoretical physics in conjunction with data analysis help us to understand the basic physical process govering the universe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3-D velocity images of the crest and upper mantle beneath the region of 112° -124°E, 28°-39°N including the Dabie-Sulu orogenic belt are reconstructed by using 36405 P-wave arrivals of 3437 regional and 670 distant earthquakes during the period from 1981 to 1996, and gridding the area of 0.5° * 0.5°. The results of tomography demonstrate that: 1. The results of tomographic imaging show a broad heterogeneity in P wave velocity structure for the lithosphere beneath the Dabie-Sulu orogenic belt. 2. In the Dabie orogenic belt, the velocity patterns in the crust are different among various tectonic units. The Dabie and Qinling orogenic belts are remarkable in the tomographic images, and in mm the Hongan and Dabie blocks in the Dabie orogenic belt are also imaged very distinguishably. 3. A velocity (about 5.9~6.0 km/s) layer exists in the Dabie block at depth between 15~25 km, which is coincident with the low-resistance layer at the depth of 12-23 km, being inferred to be the tectonic detachment zone and suggesting that the extension detachment structure was formed in the middle crust. Beneath the southern and northerm Dabie tectonic units, the north-dipping high-velocity (at level of 6.5 ~ 6.6 km/s) block was developed in the crust, which might be correlated with the UHP rockswith low content of the meta-ultramafic rocks. This result is in agreement with the geological observation on the surface. 4. The velocity image at 40 km depth reveals the features at the top of mantle and the configuration of the Moho discontinuity. The depth of the Moho changes slightly along the trend of the orogenic belt. It in Hongan block is less than 40 km, but it is different in the western and eastern parts of the Dabie block, the former is more than 40 km, and the latter less than or equal to 40 km. The remnant of the mountain root exists between the Shangcheng-Macheng fault and the line of Huoshan-Yuexi-Yingshan in the Dabie orogenic belt, and beneath the southern and northern Dabie tectonic units. However, the thickness of the Moho is about 40 km and there is no obvious changes, which suggest that the Dabie orogenic belt has been experienced quite in the gravity equilibration. The Moho's depth in the Sulu is less than 40 km. 5. There is a dipping slab-like high-velocity body in the uppermost mantle. It is sandwiched by slow velocities and exists beneath the Dabie-Sulu orogenic belt in the range of depths between the Moho discontinuity and 110 km at least. This high-velocity body outlines a picture of the slab interpreted as the remnant of the Triassic subducted YZ. 6. The Sulu orogenic belt displays "crocodilian" velocity structure, the upper crust of the Yangtze thrusted over the Huabei crest, and the Huabei crust indented into the Yangtze crust, where the ancient subduction zone of the Yangtze lithosphere located. Based on the previous geological data, this structure is not related with the collision between the Yangtze and Sino-Korean Blocks, but caused by the sinistral offset of the Tan-Lu Fault. Studied on the velocity structure of the eastern Huabei lithosphere indicates: 1. The 'present-day' lithosphere of the eastern Huabei is between 40-100 km thick with greatly thinned lithosphere around the Bohai Sea. Generally, thickness of the lithosphere in this region decreased eastwards. 2. The attenuation of the lithosphere is attributed to the strongly uplift of the asthenosphere. In the area between the Taihang Mountains and the Tan-Lu Fault, there is a 'lever' with red low velocity belt, it is clearly defined, transverse continuity, depth between 100-150 km, local variations visible, and an upwards trend towards the Bohai Sea. Generally, the velocity structure in the mantle beneath the lithosphere displays irregular column-shape consisting of alternating high and low velocities, and when cold high velocity ancient lithosphere connects with the hot low velocity mantle materials forming precipitous compact structure. More heat pathways from the mantle occur towards the Tan-Lu Fault. 3. The strongly irregular characteristics of the contact between the asthenosphere and the lithosphere is induced by the long-term hot, chemical erosion and alteration on the contact. 4. There are still preserved high velocity lithosphedc root beneath Huabei with 'block-shape' distribution and surrounded by hot materials. Results of our studies indicate that the evolution models of the eastern China mantle are characterized by the direct contact between the uplifted lithosphere and the Huabei Craton accompanying the upwelling of the deep mantle materials. At the contact betwen the lithosphere and the asthenosphere, the upwelled mantle materials replaced and altered the lower lithosphere forming the metasome through the hot and chemical modifications impacted on the Craton lithosphere, and changed it into the lithosphere gradually, resulting in the lithospheric thinning. Thus, the lithospheric thinning is the result of the upwelling of the asthenosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under the auspices of the 'knowledge-Innovation Program' of CAS, Institute of Geology and Geophysics has established the Broadband Seismic Laboratory. A new kind of 24-bit high-resolution seismograph DAS24-3B has been designed and manufactured in an effort of developing China's own technology of seismic array. Since these instruments will primarily be used in field operation, there is a need to optimize the system software of data acquisition system (DAS) to enhance its stability, compatibility and maintenance. The design ideas of the system software of DAS24-3B are partly learned from the advanced DAS 72A-08. In this system there are two exclusive communication programs DNAPI-COM1 and DNAPI-LPT1, which are suitable for all standard industrial computers with ECP parallel port and serial port. By these exclusive parallel and serial communication interface the system software is split into three parts, acquisition program, user's control program and graphical display program, which can function well in separate units and can run correctly in whole. The three parts of DAS24-3B's system software possess different functions and advantages. The function of acquisition program is to control the process of seismic data acquisition. DAS24-3B system reduced its power and harddisk read-write disturbance by using the extended memory attached to its CPU, which functions as enlarging the data buffer of system and lessening the times of harddisk read-write operations. Since GPS receiver of DAS is strongly sensitive to the around environment and has the possibility of signal loss the acquisition program has been designed with the ability to automatically trail the GPS locked time. The function of user's controlling program is to configure the system's work environment, to inform the user's commands to DAS, to trail the status of DAS in real-time. The function of graphical display program is to illustrate data in figures, to convert data file into some common formatted file, to split data file in parts and combine data files into one. Both user's control program and graphical display program are API (Application Programming Interface) in window 95/98 system. Both possess the features of clearness and friendship by use of all kind of window controls, which are composed by menu, toolbar, statusbar, dialogue box, message box, edit box, scrollbar, time control, button and so on. Two programs of systemic exception handles are provided to treat the trouble in field. The DAS24-3B DAS has been designed to be easier to use-better ability, more stable and simpler. It has been tested in field and base station and has been proved more suitable for field operation of seismic array than other native instruments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum VHlhro) point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fNand the distance of the two adjacent extremum points equals to //,/,",. At the same time, the paper finds that the distance of two adjacent extremum districts near the slope surface is H,hn too. In chaptet 5, based on residual pushing force model as well as pore pressure model of Martin-Finn-Seed, a method for estimating the permanent displacement of the slide is put forward in this paper, and then put it into dynamic analysis of the left abutment slope of Jinping hydropower station. The forecasting result is almost coincided with numerical simulation result. The Jinping hydropower station, located at the middle stream of Yalongjiang River and the west side of Jinpingdahewan, is the highest double-curvature arch dam planned in building in the world. However, deep fractures are well developed at the left abutment slope, so stability of the slope is a key engineering geological problem. The paper studies the dynamic stability of the slope. In the analysis, considering regional geology and regional seismology of the slope, combining with characteristics of the slope as well as the scale of the project, PGA(peak ground acceleration) of the site is decided (about 197.1cm/s2) by engineering seismology, and then the seismic input used in the slope dynamic analysis is determined. Comprehensive studies are carried out on the slope, especially to its deep fractures, and then the paper concludes that the deep fractures of slope are the result of the combination unloading effect of gravity and tectonic stress. At the same time, the failure model of the slope under dynamic input is attained. Based on these, the stability is comprehensively studied for section IV-IV with numerical simulation method as well as method putting forward in chapter 5. At last, the paper concludes that under dynamic input, the section will slide along fault f9, some deep fractures and fault/5 with certain permanent displacement, and this must be taken into consideration in the engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploit Tarim Basin Historical Physical Geographic Information System by linking historical documents and Geographic Information System, reconstruct the physical environmental evolution in Tarirn Basin during historical period (the last 2 Ka), special discuss riverhead of the Yellow River and Lop Nur. Based on analyzing Chinese historical documents (antiquity maps and texts), extract physical environmental information in Xiyu during historical period from Twenty-Five History and geographic books and records past dynasties, divide it into 4 period of time. Regarding digital topographical maps as base maps and looking on water bodies, vegetation and desert as central factors, quantify historical physical geographic data in Geographic Information System in terms of dynastic combination of Xianqin-Han, Jin-Wei-Nanbeichao, Tang-Wudai and Song-Yuan-Ming-Qing, execute physical environmental maps of Xiyu through the ages, in order to image the changes of water system, oasis and desert in Xiyu during the last 2 Ka. Compare cross orientation the relation of environmental factors all historical period of time from the influence of climate to oasis and desert, deem that climate condition decided ecological structure in direct and restrict the extent of desertification, especially climate corresponded the style of oasis and the spread of desert in the period of Jin-Wei-Nanbeichao and Tang-Wudai. Compare portrait direction the physical environmental characters in Xiyu during different period of time from 5 aspects of water bodies, oasis, desert, products and climate, deem that physical environment in Xiyu changed in all aspects during historical period. The origin of Lysenkoism about the Yellow River Undercurrent is agelong, whose ascending and descending at times due to investigating the riverhead of the Yellow River time after time during historical period and researching and disputing about the geographic location of Jishishan Mountain. It could consider the faultage in northeastern Qinghai-Xizang Plateau as the channels of undercurrent according to the research of modern geoscience field in the riverhead region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration mechanism of ionizable compounds in capillary electrochromatography (CEC) is more complicated than in high performance liquid chromatography (HPLC) due to the involvement of electrophoresis and the second chemical equilibrium. The separation mechanism of ionizable compounds in CEC has been studied theoretically. The electrochromatographic capacity factors of ions (k *) in CEC and in the pressurized CEC are derived by phenomenological approach. The influence of pH, voltage, pressure on k* is discussed. in addition, the k * of weak acid and weak base are derived based on acid-base equilibrium and the influence of pH on k * is studied theoretically.