905 resultados para Acute Myeloid-leukemia
Resumo:
Most studies exploring the role of upper airway viruses and bacteria in paediatric acute respiratory infections (ARI) focus on specific clinicaldiagnoses and/or do not account for virus–bacteria interactions. We aimed to describe the frequency and predictors of virus and bacteria codetection in children with ARI and cough, irrespective of clinical diagnosis. Bilateral nasal swabs, demographic, clinical and risk factor data were collected at enrollment in children aged <15 years presenting to an emergency department with an ARI and where cough was a symptom. Swabs were tested by polymerase chain reaction for 17 respiratory viruses and seven respiratory bacteria. Logistic regression was used to investigate associations between child characteristics and codetection of the organisms of interest. Between December 2011 and August 2014, swabs were collected from 817 (93.3%) of 876 enrolled children, median age 27.7 months (interquartile range13.9–60.3 months). Overall, 740 (90.6%) of 817 specimens were positive for any organism. Both viruses and bacteria were detected in 423 specimens (51.8%). Factors associated with codetection were age (adjusted odds ratio (aOR) for age <12 months = 4.9, 95% confidence interval (CI) 3.0, 7.9; age 12 to <24 months = 6.0, 95% CI 3.7, 9.8; age 24 to <60 months = 2.4, 95% CI 1.5, 3.9), male gender (aOR 1.46; 95% CI 1.1, 2.0), child care attendance (aOR 2.0; 95% CI 1.4, 2.8) and winter enrollment (aOR 2.0; 95% CI 1.3, 3.0). Haemophilus influenzae dominated the virus–bacteria pairs. Virus–H. influenzae interactions in ARI should be investigated further, especially as the contribution of nontypeable H. influenzae to acute and chronic respiratory diseases is being increasingly recognized.
Resumo:
A series of novel fluoroaminophosphates 4a-4j were synthesized by one-pot method in presence of tetramethylguanidine (TMG) as a catalyst and were characterized by elemental analysis, FTIR, H-1, C-13, P-31, F-19 NMR, and mass spectra. All the title compounds were evaluated forin vitro cytotoxicity against leukemic cell line derived from T-cells of leukemia patient (CEM cells) by Trypan blue exclusion and MTT assays, and these were found to exert concentration dependent cytotoxic effects. Among them 4f, 4g & 4j possessed marked cytotoxicity. 4g (with IC50 value of 6 mu M) had emerged as lead compound.
Resumo:
Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
Acute childhood osteomyelitis (OM), septic arthritis (SA), and their combination osteomyelitis with adjacent septic arthritis (OM+SA), are treated with long courses of antimicrobials and immediate surgery. We conducted a prospective multi-center randomized trial among Finnish children at age 3 months to 15 years in 1983-2005. According to the two-by-two factorial study design, children with OM or OM+SA received 20 or 30 days of antimicrobials, whereas those with SA were treated for 10 or 30 days. In addition, the whole series was randomized to be treated with clindamycin or a first-generation cephalosporin. Cases were included only if the causative agent was isolated. The treatment was instituted intravenously, but only for the first 2-4 days. Percutaneous aspiration was done to obtain a representative sample for bacteriology, but all other surgical intervention was kept at a minimum. A total of 265 patients fulfilled our strict inclusion criteria and were analyzed; 106 children had OM, 134 SA, and 25 OM+SA. In the OM group, one child in the long and one child in the short-term treatment group developed sequelae. One child with SA twice developed a late re-infection of the same joint, but the causative agents differed. Regarding surgery, diagnostic arthrocentesis or corticotomy was the only surgical procedure performed in most cases. Routine arthrotomy was not required even in hip arthritis. Serum C-reactive protein (CRP) proved to be a reliable laboratory index in the diagnosis and monitoring of osteoarticular infections. The recovery rate was similar regardless of whether clindamycin or a first-generation cephalosporin was used. We conclude that a course of 20 days of these well-absorbing antimicrobials is sufficient for OM or OM+SA, and 10 days for SA in most cases beyond the neonatal age. A short intravenous phase of only 2-5 days often suffices. CRP gives valuable information in monitoring the course of illness. Besides diagnostic aspiration, surgery should be reserved for selected cases.
Resumo:
Myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders whose etiology and molecular pathogenesis are poorly understood. During the past decade, enormous developments in microarray technology and bioinformatics methods have made it possible to mine novel molecular alterations in a large number of malignancies, including MPN and MDS, which has facilitated the detection of new prognostic, predictive and therapeutic biomarkers for disease stratification. By applying novel microarray techniques, we profiled copy number alterations and microRNA (miRNA) expression changes in bone marrow aspirate and blood samples. In addition, we set up and validated an miRNA expression test for bone marrow core biopsies in order to utilize the large archive material available in many laboratories. We also tested JAK2 mutation status and compare it with the in vitro growth pattern of hematologic progenitors cells. In the study focusing on 100 MPN cases, we detected a Janus kinase 2 (JAK2) mutation in 71 cases. We observed spontaneous erythroid colony growth in all mutation-positive cases in addition to nine mutation negative cases. Interestingly, seven JAK2V167F negative ET cases showed spontaneous megakaryocyte colony formation, one case of which also harbored a myeloproliferative leukemia virus oncogene (MPL) mutation. We studied copy number alterations in 35 MPN and 37 MDS cases by using oligonucleotide-based array comparative hybridization (array CGH). Only one essential thrombocythemia (ET) case presented copy number alterations in chromosomes 1q and 13q. In contrast, MDS cases were characterized by numerous novel cryptic chromosomal aberrations with the most common copy number losses at 5q21.3q33.1 and 7q22.1q33, while the most common copy number gain was trisomy 8. As for the study of the bone marrow core biopsy samples, we showed that even though these samples were embedded in paraffin and underwent decalcification, they were reliable sources of miRNA and suitable for array expression analysis. Further, when studying the miRNA expression profiles of the 19 MDS cases, we found that, compared to controls, two miRNAs (one human Epstein-Barr virus (miR-BART13) miRNA and one human (has-miR-671-5p) miRNA) were downregulated, whereas two other miRNAs (hsa-miR-720 and hsa-miR-21) were upregulated. However, we could find no correlation between copy number alterations and microRNA expression when integrating these two data. This thesis brings to light new information about genomic changes implicated in the development of MPN and MDS, and also underlines the power of applying genome-wide array screening techniques in neoplasias. Rapid advances in molecular techniques and the integration of different genomic data will enable the discovery of the biological contexts of many complex disorders, including myeloid neoplasias.
Resumo:
When rats were administered methyl isocyanate (MIC) by inhalation or subcutaneous route it produced severe hyperglycemia, clinical lactic acidosis, highly elevated plasma urea, and reduced plasma cholinesterase activity with unaltered erythrocytc acetyl cholinesterase activity. Irrespective of the route of administration, MIC also caused severe hypothermia, which was not ameliorated by prior administration of atropine sulphate. Acute toxic effects of MIC are essentially similar by either route except for the intensity of the effects
Resumo:
Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.
Resumo:
Acute respiratory failure (ARF) is the most common type of organ failure leading to the need for intensive care. It is often secondary to acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). ARF, and especially ALI and ARDS, cause increased morbidity, and mortality rates remain high (up to 40%). These disorders are characterised by inflammatory reaction and tissue damage. In some cases, inflammation continues and leads to an overwhelming repair process with ongoing fibrosis, accompanied by organ dysfunction and eventually a loss of function. Measuring the magnitude of the inflammation, and the repair process, would theoretically offer information concerning outcome. Early identification of patients whose disease process is likely to proceed unfavourably, would help clinicians to optimise their treatment. The aim of this study was to evaluate the epidemiology of ARF, its treatment, and outcome in Finland, with special interest in biomarkers, and their value in the prediction of mortality. Altogether, 958 adult patients treated with ventilatory support were prospectively included in this study during an eight week period in 2007 in 25 intensive care units. Plasma aminoterminal pro-brain natriuretic peptide (NT-pro-BNP) was assessed in 602 patients, and plasma cell-free DNA in 580 patients, to evaluate their prognostic value in ARF. Markers of collagen metabolism were studied in longitudinal serum samples in 68 patients in order to evaluate their evolution in ARF and the association to multiple organ dysfunction (MOD). Ventilatory support was used in 39% of all ICU patients. The estimated incidence of ARF was 149.5/100 000 per year. Median tidal volumes used were higher than recommended. Overall mortality at 90 days was 31%. Plasma NT-pro-BNP and cell-free DNA were highly increased in the majority of patients. Both markers were independent predictors of 90-day mortality, but their discriminative power was at most moderate when used separately. The mortality was highest in those patients, in whom both biomarkers were over their separate cut-off values. Thus, combined use of these biomarkers may increase their clinical value in the mortality prediction. The markers of collagen metabolism changed significantly over time in surviving patients. None of these markers did associate with MOD in these patients.
Resumo:
A causative agent in approximately 40% of diarrhea] cases. still remains unidentified. Though many enteroviruses (EVs) are transmitted through fecal-oral route and replicate in the intestinal cells, their association with acute diarrhea has not so far been recognized due to lack of detailed epidemiological investigations. This long-term, detailed molecular epidemiological study aims to conclusively determine the association of non-polio enteroviruses (NPEVs) with acute diarrhea in comaparison with rotavirus (RV) in children. Diarrheal stool specimens from 2161 children aged 0-2 years and 169 children between 2 and 9 years, and 1800 normal stool samples from age-matched healthy children between 0 and 9 years were examined during 2008-2012 for enterovirus (oral polio vaccine strains (OPVs) and NPEVs). Enterovirus serotypes were identified by complete VP1 gene sequence analysis. Enterovirus and rotavirus were detected in 19.01% (380/2330) and 13.82% (322/2330) diarrheal stools. During the study period, annual prevalence of EV- and RV-associated diarrhea ranged between 8% and 22%, but with contrasting seasonal prevalence with RV predominating during winter months and NPEV prevailing in other seasons. NPEVs are associated with epidemics-like outbreaks during which they are detected in up to 50% of diarrheic children, and in non-epidemic seasons in 0-10% of the patients. After subtraction of OPV-positive diarrheal cases (1.81%), while NPEVs are associated with about 17% of acute diarrhea, about 6% of healthy children showed asymptomatic NPEV excretion. Of 37 NPEV serotypes detected in diarrheal children, seven echovirus types 1, 7, 11, 13, 14, 30 and 33 are frequently observed, with Ell being more prevalent followed by E30. In conclusion, NPEVs are significantly associated with acute diarrhea, and NPEVs and rotavirus exhibit contrasting seasonal predominance. This study signifies the need for a new direction of research on enteroviruses involving systematic analysis of their contribution to diarrheal burden. (C) 2013 Elsevier B.V. All rights reserved.