979 resultados para 166-1007
Resumo:
This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.
Resumo:
PURPOSE: The aim of this study was to further evaluate the validity and clinical meaningfulness of appetite sensations to predict overall energy intake as well as body weight loss. METHODS: Men (n=176) and women (n=139) involved in six weight loss studies were selected to participate in this study. Visual analogue scales were used to measure appetite sensations before and after a fixed test meal. Fasting appetite sensations, 1 h post-prandial area under the curve (AUC) and the satiety quotient (SQ) were used as predictors of energy intake and body weight loss. Two separate measures of energy intake were used: a buffet style ad libitum test lunch and a three-day self-report dietary record. RESULTS: One-hour post-prandial AUC for all appetite sensations represented the strongest predictors of ad libitum test lunch energy intake (p0.001). These associations were more consistent and pronounced for women than men. Only SQ for fullness was associated with ad libitum test lunch energy intake in women. Similar but weaker relationships were found between appetite sensations and the 3-day self-reported energy intake. Weight loss was associated with changes in appetite sensations (p0.01) and the best predictors of body weight loss were fasting desire to eat; hunger; and PFC (p0.01). CONCLUSIONS: These results demonstrate that appetite sensations are relatively useful predictors of spontaneous energy intake, free-living total energy intake and body weight loss. They also confirm that SQ for fullness predicts energy intake, at least in women.
Resumo:
A common scenario in many pairing-based cryptographic protocols is that one argument in the pairing is fixed as a long term secret key or a constant parameter in the system. In these situations, the runtime of Miller's algorithm can be significantly reduced by storing precomputed values that depend on the fixed argument, prior to the input or existence of the second argument. In light of recent developments in pairing computation, we show that the computation of the Miller loop can be sped up by up to 37 if precomputation is employed, with our method being up to 19.5 faster than the previous precomputation techniques.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
The advantages of a spherical imaging model are increasingly well recognized within the robotics community. Perhaps less well known is the use of the sphere for attitude estimation, control and scene structure estimation. This paper proposes the sphere as a unifying concept, not just for cameras, but for sensor fusion, estimation and control. We review and summarize relevant work in these areas and illustrate this with relevant simulation examples for spherical visual servoing and scene structure estimation.
Resumo:
We present details and results obtained with an underwater system comprising two different autonomous underwater robots (AUV) and ten static underwater nodes (USN) networked together optically and acoustically. The AUVs can locate and hover above the static nodes for data upload, and they can perform network maintenance functions such as deployment, relocation, and recovery. The AUVs can also locate each other, dock, and move using coordinated control that takes advantage of each AUV’s strength.
Resumo:
This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper “fullness” are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
In this paper, we present recent results with using range from radio for mobile robot localization. In previous work we have shown how range readings from radio tags placed in the environment can be used to localize a robot. We have extended previous work to consider robustness. Specifically, we are interested in the case where range readings are very noisy and available intermittently. Also, we consider the case where the location of the radio tags is not known at all ahead of time and must be solved for simultaneously along with the position of the moving robot. We present results from a mobile robot that is equipped with GPS for ground truth, operating over several km.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
A virtual fence is created by applying an aversive stimulus to an animal when it approaches a predefined boundary. It is implemented by a small animal-borne computer system with a GPS receiver. This approach allows the implementation of virtual paddocks inside a normal physically-fenced paddock. Since the fence lines are virtual they can be moved by programming to meet the needs of animal or land management. This approach enables us to consider animals as agents with natural mobility that are controllable and to apply a vast body of theory in motion planning. In this paper we describe a herd-animal simulator and physical experiments conducted on a small herd of 10 animals using a Smart Collar. The Smart Collar consists of a GPS, PDA, wireless networking and a sound amplifier. We describe a motion planning algorithm that can move a virtual paddock subject to landscape constraints which is suitable for mustering cows. We present simulation results and data from experiments with 8 cows equipped with Smart Collars.
Resumo:
If mobile robots are to perform useful tasks in the real-world they will require a catalog of fundamental navigation competencies and a means to select between them. In this paper we describe our work on strongly vision-based competencies: road-following, person or vehicle following, pose and position stabilization. Results from experiments on an outdoor autonomous tractor, a car-like vehicle, are presented.
Resumo:
This paper introduces the application of a sensor network to navigate a flying robot. We have developed distributed algorithms and efficient geographic routing techniques to incrementally guide one or more robots to points of interest based on sensor gradient fields, or along paths defined in terms of Cartesian coordinates. The robot itself is an integral part of the localization process which establishes the positions of sensors which are not known a priori. We use this system in a large-scale outdoor experiment with Mote sensors to guide an autonomous helicopter along a path encoded in the network. A simple handheld device, using this same environmental infrastructure, is used to guide humans.
Resumo:
This paper details the development of a machine learning system which uses the helicopter state and the actions of an instructing pilot to synthesise helicopter control modules online. Aggressive destabilisation/restabilisation sequences are used for training, such that a wide state space envelope is covered during training. The performance of heading, roll, pitch, height and lateral velocity control learning is presented using our Xcell 60 experimental platform. The helicopter is demonstrated to be stabilised on all axes using the “learning from a pilot” technique. To our knowledge, this is the first time a “learning from a pilot” technique has been successfully applied to all axes.