136 resultados para symplectic diffeomorphisms
Resumo:
Given manifolds M and N, with M compact, we study the geometrical structure of the space of embeddings of M into N, having less regularity than C(infinity) quotiented by the group of diffeomorphisms of M.
Resumo:
Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
We prove an estimate on the difference of Maslov indices relative to the choice of two distinct reference Lagrangians of a continuous path in the Lagrangian Grassmannian of a symplectic space. We discuss some applications to the study of conjugate and focal points along a geodesic in a semi-Riemannian manifold.
Resumo:
In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyse systems described by first-order actions using the Hamilton-Jacobi (HJ) formalism for singular systems. In this study we verify that generalized brackets appear in a natural way in HJ approach, showing us the existence of a symplectic structure in the phase space of this formalism.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
Resumo:
The conformal affine sl(2) Toda model coupled to the matter field is treated as a constrained system in the context of Faddeev-Jackiw and the (constrained) symplectic schemes. We recover from this theory either the sine-Gordon or the massive Thirring model, through a process of Hamiltonian reduction, considering the equivalence of the Noether and topological currrents as a constraint and gauge fixing the conformal symmetry. (C) 2000 Academic Press.
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.
Resumo:
In this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.