939 resultados para stereotactic radiotherapy


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Virally mediated head and neck cancers (VMHNC) often present with nodal involvement and are highly radioresponsive, meaning that treatment plan adaptation during radiotherapy (RT) in a subset of patients is required. We sought to determine potential risk profiles and a corresponding adaptive treatment strategy for these patients. Methodology 121 patients with virally mediated, node positive nasopharyngeal (Epstein Barr Virus positive) or oropharyngeal (Human Papillomavirus positive) cancers, receiving curative intent RT were reviewed. The type, frequency and timing of adaptive interventions, including source-to-skin distance (SSD) corrections, re-scanning and re-planning, were evaluated. Patients were reviewed based on the maximum size of the dominant node to assess the need for plan adaptation. Results Forty-six patients (38%) required plan adaptation during treatment. The median fraction at which the adaptive intervention occurred was 26 for SSD corrections and 22 for re-planning CTs. A trend toward 3 risk profile groupings was discovered: 1) Low risk with minimal need (< 10%) for adaptive intervention (dominant pre-treatment nodal size of ≤ 35 mm), 2) Intermediate risk with possible need (< 20%) for adaptive intervention (dominant pre-treatment nodal size of 36 mm – 45 mm) and 3) High-risk with increased likelihood (> 50%) for adaptive intervention (dominant pre-treatment nodal size of ≥ 46 mm). Conclusion In this study, patients with VMHNC and a maximum dominant nodal size of > 46 mm were identified at a higher risk of requiring re-planning during a course of definitive RT. Findings will be tested in a future prospective adaptive RT study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organ motion as a result of respiration is an important field of research for medical physics. Knowledge of magnitude and direction of this motion is necessary to allow for more accurate radiotherapy treatment planning. This will result in higher doses to the tumour whilst sparing healthy tissue. This project involved human trials, where the radiation therapy patient's kidneys were CT scanned under three different conditions; whilst free breathing (FB), breath-hold at normal tidal inspiration (BHIN), and breath-hold at normal tidal expiration (BHEX). The magnitude of motion was measured by recording the outline of the kidney from a Beam's Eye View (BEV). The centre of mass of this 2D shape was calculated for each set using "ImageJ" software and the magnitude of movement determined from the change in the centroid's coordinates between the BHIN and BHEX scans. The movement ranged from, for the left and right kidneys, 4-46mm and 2-44mm in the superior/inferior (axial) plane, 1-21mm and 2- 16mm in the anterior/posterior (coronal) plane, and 0-6mm and 0-8mm in the lateral/medial (sagittal) plane. From exhale to inhale, the kidneys tended to move inferiorly, anteriorly and laterally. A standard radiotherapy plan, designed to treat the para-aortics with opposed lateral fields was performed on the free breathing (planning) CT set. The field size and arrangement was set up using the same parameters for each subject. The prescription was to deliver 45 Gray in 25 fractions. This field arrangement and prescription was then copied over to the breath hold CT sets, and the dosimetric differences were compared using Dose Volume Histograms (DVH). The point of comparison for the three sets was recorded as the percentage volume of kidney receiving less than or equal to 10 Gray. The QUASAR respiratory motion phantom was used with the range of motion determined from the human study. The phantom was imaged, planned and treated with a linear accelerator with dose determined by film. The effect of the motion was measured by the change in the penumbra of the film and compared to the penumbra from the treatment planning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the issues related to rural people with cancer whose choice of radiotherapy treatment necessitated travel and accommodation in a metropolitan centre. Semi-structured interviews with 46 participants, from the Toowoomba and Darling Downs region of Queensland, Australia, were conducted and the data thematically analysed. The specific themes identified were: being away from loved ones, maintaining responsibilities whilst undergoing treatment, emotional stress, burden on significant others, choice about radiotherapy as a treatment, travel and accommodation, and financial burden. This study supports the need for a radiotherapy centre in the location of Toowoomba as a way of providing some equity and access to such treatment for the rural people of Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Carbonic anhydrase IX (CA IX) expression has been described as an endogenous marker of hypoxia in solid neoplasms. Furthermore, CA IX expression has been associated with an aggressive phenotype and resistance to radiotherapy. We assessed the prognostic significance of CA IX expression in patients with muscle-invasive bladder cancer treated with radiotherapy. Materials and methods: A standard immunohistochemistry technique was used to show CA IX expression in 110 muscle-invasive bladder tumours treated with radiotherapy. Clinicopathological data were obtained from medical case notes. Results: CA IX immunostaining was detected in 89 (∼81%) patients. Staining was predominantly membranous, with areas of concurrent cytoplasmic and nuclear staining and was abundant in luminal and perinecrotic areas. No significant correlation was shown between the overall CA IX status and the initial response to radiotherapy, 5-year bladder cancer-specific survival or the time to local recurrence. Conclusions: The distribution of CA IX expression in paraffin-embedded tissue sections seen in this series is consistent with previous studies in bladder cancer, but does not provide significant prognostic information with respect to the response to radiotherapy at 3 months and disease-specific survival after radical radiotherapy. © 2007 The Royal College of Radiologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy combined with three weekly 100 mg/m2 of cisplatin is the accepted standard of care in head and neck squamous cell carcinoma. However, this regimen is associated with severe toxicities with devastating effects on patients. Alternative protocols like weekly 40 mg/m2 have been used in an attempt to reduce toxicities. The main objective of the present study is to identify the dose intensities and toxicities of weekly cisplatin in patients treated in a tertiary centre over a 12 month period. Included patients had squamous cell carcinoma arising in the oral cavity, oropharynx, larynx, or hypopharynx. Patients were excluded if they had nasopharyngeal squamous cell carcinoma, distant metastasis or if they had prior treatment for head and neck cancer excluding neck dissection. During the study period, 52 patients met the inclusion criteria and their data were retrospectively obtained from the patients' database of St James hospital, Dublin. The median age of the study cohort was 54 years (range 33-73). Of the patients, 40 (76.9 %) were male and 12 (20.1 %) were female. The primary tumour sites were as follows: oral cavity and oropharynx in 38 (73 %), larynx in 10 (19 %), and hypopharynx in 4 (8 %). In total, 33 (63.5 %) patients had stage IV disease, while 19 (36.5 %) had stage III disease. Treatment was definitive in 35 (67 %) patients and adjuvant in 17 (35 %). Full-dose radiotherapy was achieved in 50 (96 %) patients. Only 22 (42.3 %) patients completed the intended six cycles of chemotherapy. Cumulative dose of 200 mg/m2 or more was reached in 37 (71 %) patients. The acute adverse effects included grades 3 and 4 mucositis, which occurred in 22 (43.3 %) and 6 patients (12 %), respectively. Grade 3 and 4 neutropenia occurred in six (11.5 %) and three (5.7 %) patients, respectively. The only other haematological toxicity was grade 3 anaemia in 20 (38.4 %) patients. There was no grade 3 or 4 renal toxicity among the study cohort, although grade 2 was observed in six (11.5 %) patients. Death occurred in one patient due to neutropenic septicaemia. In conclusion, weekly cisplatin is associated with moderate to severe toxicities and might lead to suboptimal chemotherapy delivery. More prospective clinical studies are required to determine the optimal chemoradiation regimen in head and neck squamous cell carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across 5 centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity-modulated radiotherapy (IMRT) and 47 treated with volumetric-modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organ-at-risk sparing, through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each organ-at-risk. Statistical significance was evaluated using two-tailed Welch’s T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the organs-at-risk: with increased compliance with recommended organ-at-risk dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used a homogeneous water-equivalent model of an electronic portal imaging device (EPID), contoured as a structure in a radiotherapy treatment plan, to produce reference dose images for comparison with in vivo EPID dosimetry images. Head and neck treatments were chosen as the focus of this study, due to the heterogeneous anatomies involved and the consequent difficulty of rapidly obtaining reliable reference dose images by other means. A phantom approximating the size and heterogeneity of a typical neck, with a maximum radiological thickness of 8.5 cm, was constructed for use in this study. This phantom was CT scanned and a simple treatment including five square test fields and one off-axis IMRT field was planned. In order to allow the treatment planning system to calculate dose in a model EPID positioned a distance downstream from the phantom to achieve a source-to-detector distance (SDD) of 150 cm, the CT images were padded with air and the phantom’s “body” contour was extended to encompass the EPID contour. Comparison of dose images obtained from treatment planning calculations and experimental irradiations showed good agreement, with more than 90% of points in all fields passing a gamma evaluation, at γ (3%, 3mm )Similar agreement was achieved when the phantom was over-written with air in the treatment plan and removed from the experimental beam, suggesting that water EPID model at 150 cm SDD is capable of providing accurate reference images for comparison with clinical IMRT treatment images, for patient anatomies with radiological thicknesses ranging from 0 up to approximately 9 cm. This methodology therefore has the potential to be used for in vivo dosimetry during treatments to tissues in the neck as well as the oral and nasal cavities, in the head-and-neck region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.