Commissioning of a new commercial plastic scintillator system for radiotherapy


Autoria(s): Morales, J.; Hill, R.; Crowe, S.; Trapp, J.
Data(s)

01/03/2014

Resumo

Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.

Identificador

http://eprints.qut.edu.au/71398/

Publicador

Springer Netherlands

Relação

DOI:10.1007/s13246-014-0248-y

Morales, J., Hill, R., Crowe, S., & Trapp, J. (2014) Commissioning of a new commercial plastic scintillator system for radiotherapy. Australasian Physical and Engineering Sciences in Medicine, 37(1), p. 177.

http://purl.org/au-research/grants/ARC/LP110100401

Fonte

School of Chemistry, Physics & Mechanical Engineering; Science & Engineering Faculty

Palavras-Chave #029903 Medical Physics
Tipo

Journal Article