893 resultados para space optical communications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The articles in this special section were presented at the European Conference on Optical Communications (ECOC) that was held on on 21???25 September 2014 in Cannes, France

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and cost-effective technique for generating a flat, square-shaped multi-wavelength optical comb with 42.6 GHz line spacing and over 0.5 THz of total bandwidth is presented. A detailed theoretical analysis is presented, showing that using two concatenated modulators driven with voltages of 3.5 Vp are necessary to generate 11 comb lines with a flatness below 2dB. This performance is experimentally demonstrated using two cascaded Versawave 40 Gbit/s low drive voltage electro-optic polarisation modulators, where an 11 channel optical comb with a flatness of 1.9 dB and a side-mode-suppression ratio (SMSR) of 12.6 dB was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this talk we will review some of the key enabling technologies of optical communications and potential future bottlenecks. Single mode fibre (SMF) has long been the preferred waveguide for long distance communication. This is largely due to low loss, low cost and relative linearity over a wide bandwidth. As capacity demands have grown SMF has largely been able to keep pace with demand. Several groups have been identifying the possibility of exhausting the bandwidth provided by SMF [1,2,3]. This so called “capacity-crunch” has potentially vast economic and social consequences and will be discussed in detail. As demand grows optical power launched into the fibre has the potential to cause nonlinearities that can be detrimental to transmission. There has been considerable work done on identifying this nonlinear limit [4, 5] with a strong re- search interest currently on the topic of nonlinear compensation [6, 7]. Embracing and compensating for nonlinear transmission is one potential solution that may extend the lifetime of the current waveguide technology. However, at sufficiently high powers the waveguide will fail due to heat-induced mechanical failure. Moving forward it be- comes necessary to address the waveguide itself with several promising contenders discussed, including few-mode fibre and multi-core fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear Fourier transform, also known as eigenvalue communications, is a transmission and signal processing technique that makes positive use of the nonlinear properties of fibre channels. I will discuss recent progress in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

对比了相干探测和直接探测,以及自由空间相干光通信和光纤相干通信,对相干自由空间激光通信系统的特点和关键技术进行了讨论,回顾了近年来国外在自由空间相干光通信领域内开展的有关研究计划。最后对相干光通信技术的应用前景进行了展望。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protecting signals is one of the main tasks in information transmission. A large number of different methods have been employed since many centuries ago. Most of them have been based on the use of certain signal added to the original one. When the composed signal is received, if the added signal is known, the initial information may be obtained. The main problem is the type of masking signal employed. One possibility is the use of chaotic signals, but they have a first strong limitation: the need to synchronize emitter and receiver. Optical communications systems, based on chaotic signals, have been proposed in a large number of papers. Moreover, because most of the communication systems are digital and conventional chaos generators are analogue, a conversion analogue-digital is needed. In this paper we will report a new system where the digital chaos is obtained from an optically programmable logic structure. This structure has been employed by the authors in optical computing and some previous results in chaotic signals have been reported. The main advantage of this new system is that an analogue-digital conversion is not needed. Previous works by the authors employed Self-Electrooptical Effect Devices but in this case more conventional structures, as semiconductor laser amplifiers, have been employed. The way to analyze the characteristics of digital chaotic signals will be reported as well as the method to synchronize the chaos generators located in the emitter and in the receiver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eye-safety requirements in important applications like LIDAR or Free Space Optical Communications make specifically interesting the generation of high power, short optical pulses at 1.5 um. Moreover, high repetition rates allow reducing the error and/or the measurement time in applications involving pulsed time-of-flight measurements, as range finders, 3D scanners or traffic velocity controls. The Master Oscillator Power Amplifier (MOPA) architecture is an interesting source for these applications since large changes in output power can be obtained at GHz rates with a relatively small modulation of the current in the Master Oscillator (MO). We have recently demonstrated short optical pulses (100 ps) with high peak power (2.7 W) by gain switching the MO of a monolithically integrated 1.5 um MOPA. Although in an integrated MOPA the laser and the amplifier are ideally independent devices, compound cavity effects due to the residual reflectance at the different interfaces are often observed, leading to modal instabilities such as self-pulsations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we will introduce the innovative concept of a plenoptic sensor that can determine the phase and amplitude distortion in a coherent beam, for example a laser beam that has propagated through the turbulent atmosphere.. The plenoptic sensor can be applied to situations involving strong or deep atmospheric turbulence. This can improve free space optical communications by maintaining optical links more intelligently and efficiently. Also, in directed energy applications, the plenoptic sensor and its fast reconstruction algorithm can give instantaneous instructions to an adaptive optics (AO) system to create intelligent corrections in directing a beam through atmospheric turbulence. The hardware structure of the plenoptic sensor uses an objective lens and a microlens array (MLA) to form a mini “Keplerian” telescope array that shares the common objective lens. In principle, the objective lens helps to detect the phase gradient of the distorted laser beam and the microlens array (MLA) helps to retrieve the geometry of the distorted beam in various gradient segments. The software layer of the plenoptic sensor is developed based on different applications. Intuitively, since the device maximizes the observation of the light field in front of the sensor, different algorithms can be developed, such as detecting the atmospheric turbulence effects as well as retrieving undistorted images of distant objects. Efficient 3D simulations on atmospheric turbulence based on geometric optics have been established to help us perform optimization on system design and verify the correctness of our algorithms. A number of experimental platforms have been built to implement the plenoptic sensor in various application concepts and show its improvements when compared with traditional wavefront sensors. As a result, the plenoptic sensor brings a revolution to the study of atmospheric turbulence and generates new approaches to handle turbulence effect better.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A free space optical wireless communication system with 3 degree angular coverage and 1.25 GHz modulation bandwidth is reported, in which relatively narrow laser beam of a simultaneous high power, high modulation speed and ultra high modulation efficiency directly modulated two-electrode tapered laser diode is steered using a nematic phase-only Liquid-Crystal On Silicon Spatial Light Modulator (LCOS SLM) by displaying reconfigurable 256 phase level gratings. © 1983-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.