980 resultados para solution-processed bulk heterojunction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS quantum dots about 3-6 nm in diameter were synthesized with a novel method. Unlike the synthesis of oleic acid capped PbS quantum dots, the reactions were carried out in solution at room temperature, with the presence of a capping ligand species, MDMO-PPV. The quantum dots were used to fabricate bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT: PSS)/MDMO-PPV: PbS/Al structure. Current density-voltage characterization of the devices showed that after the addition of the MDMO-PPV capped PbS quantum dots to MDMO-PPV film, the performance was dramatically improved compared with pristine MDMO-PPV solar cells. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS nanorods about 100 nm in diameter and 400 nm in length were synthesized via a hydrothermal route in toluene and dimethylsulfoxide solution. By blending the PbS nanorods with the MDMO-PPV as the active layer, bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT PSS)/MDMO-PPV PbS nanorods/Al structure were fabricated in a N-2 filled glove box, Current density-voltage characterization of the devices showed that the solar cells with PbS nanorods hybrid with MDMO-PPV as active layer were better in performance than the devices with the polymer only. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit beschäftigt sich mit der Kontrolle von Selbstorganisation und Mikrostruktur von organischen Halbleitern und deren Einsatz in OFETs. In Kapiteln 3, 4 und 5 eine neue Lösungsmittel-basierte Verabeitungsmethode, genannt als Lösungsmitteldampfdiffusion, ist konzipiert, um die Selbstorganisation von Halbleitermolekülen auf der Oberfläche zu steuern. Diese Methode als wirkungsvolles Werkzeug erlaubt eine genaue Kontrolle über die Mikrostruktur, wie in Kapitel 3 am Beispiel einer D-A Dyad bestehend aus Hexa-peri-hexabenzocoronene (HBC) als Donor und Perylene Diimide (PDI) als Akzeptor beweisen. Die Kombination aus Oberflächenmodifikation und Lösungsmitteldampf kann die Entnetzungseffekte ausgleichen, so dass die gewüschte Mikrostruktur und molekulare Organisation auf der Oberfläche erreicht werden kann. In Kapiteln 4 und 5 wurde diese Methode eingesetzt, um die Selbstorganisation von Dithieno[2, 3-d;2’, 3’-d’] benzo[1,2-b;4,5-b’]dithiophene (DTBDT) und Cyclopentadithiophene -benzothiadiazole copolymer (CDT-BTZ) Copolymer zu steuern. Die Ergebnisse könnten weitere Studien stimulieren und werfen Licht aus andere leistungsfaähige konjugierte Polymere. rnIn Kapiteln 6 und 7 Monolagen und deren anschlieβende Mikrostruktur von zwei konjugierten Polymeren, Poly (2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) PBTTT und Poly{[N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′- (2,2′-bithiophene)}, P(NDI2OD-T2)) wurden auf steife Oberflächen mittels Tauchbeschichtung aufgebracht. Da sist das erste Mal, dass es gelungen ist, Polymer Monolagen aus der Lösung aufzubringen. Dieser Ansatz kann weiter auf eine breite Reihe von anderen konjugierten Polymeren ausgeweitet werden.rnIn Kapitel 8 wurden PDI-CN2 Filme erfolgreich von Monolagen zu Bi- und Tri-Schichten auf Oberflächen aufgebracht, die unterschiedliche Rauigkeiten besitzen. Für das erste Mal, wurde der Einfluss der Rauigkeit auf Lösungsmittel-verarbeitete dünne Schichten klar beschrieben.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, diketopyrrolopyrrole-based polymer bulk heterojunction solar cells with inverted and regular architecture have been investigated. The influence of the polymer:fullerene ratio on the photoactive film nanomorphology has been studied in detail. Transmission Electron Microscopy and Atomic Force Microscopy reveal that the resulting film morphology strongly depends on the fullerene ratio. This fact determines the photocurrent generation and governs the transport of free charge carriers. Slight variations on the PCBM ratio respect to the polymer show great differences on the electrical behavior of the solar cell. Once the polymer:fullerene ratio is accurately adjusted, power conversion efficiencies of 4.7% and 4.9% are obtained for inverted and regular architectures respectively. Furthermore, by correlating the optical and morphological characterization of the polymer:fullerene films and the electrical behavior of solar cells, an ad hoc interpretation is proposed to explain the photovoltaic performance as a function of this polymer:blend composition.