993 resultados para síndrome de hipermobilidade articular
Resumo:
The influence of pH on interfacial energy and wettability distributed over the phospholipid bilayer surface were studied, and the importance of cartilage hydrophobicity (wettability) on the coefficient of friction (f) was established. It is argued that the wettability of cartilage signifi antly depends on the number of phospholipid bilayers acting as solid lubricant; the hypothesis was proven by conducting friction tests with normal and lipid- depleted cartilage samples. A lamellar-roller-bearing lubrication model was devised involving two mechanisms: (i) lamellar frictionless movement of bilayers, and (ii) roller-bearing lubrication mode through structured synovial fluid, which operates when lamellar spheres, liposomes and macromolecules act like a roller-bearing situated between two cartilage surfaces in effective biological lubrication.
Resumo:
This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.
Resumo:
Grading osteoarthritic tissue has, until now, been a laboratory process confined to research activities. This thesis establishes a scientific protocol that extends osteoarthritic tissue ranking to surgical practice. The innovative protocol, which now incorporates the structural degeneration of collagen, enhances the traditional Modified Mankin ranking system, enabling its application to real time decision during surgery. Because it is fast and without time consuming laboratory process, it would potentially enable the cataloguing of tissues in osteoarthritic joints in all compartments of diseased joints during surgery for epistemological study and insight into the manifestation of osteoarthritis across age, gender, occupation, physical activities and race.
Resumo:
This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.
Resumo:
Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.
Resumo:
Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint
Resumo:
The application of decellularized extracellular matrices to aid tissue regeneration in reconstructive surgery and regenerative medicine has been promising. Several decellularization protocols for removing cellular materials from natural tissues such as heart valves are currently in use. This paper evaluates the feasibility of potential extension of this methodology relative to the desirable properties of load bearing joint tissues such as stiffness, porosity and ability to recover adequately after deformation to facilitate physiological function. Two decellularization protocols, namely: Trypsin and Triton X-100 were evaluated against their effects on bovine articular cartilage, using biomechanical, biochemical and microstructural techniques. These analyses revealed that decellularization with trypsin resulted in severe loss of mechanical stiffness including deleterious collapse of the collagen architecture which in turn significantly compromised the porosity of the construct. In contrast, triton X-100 detergent treatment yielded samples that retain mechanical stiffness relative to that of the normal intact cartilage sample, but the resulting construct contained ruminant cellular constituents. We conclude that both of these common decellularization protocols are inadequate for producing constructs that can serve as effective replacement and scaffolds to regenerate articular joint tissue.
Resumo:
Mechanical stress is an important external factor effecting the development and maintenance of articular cartilage. The metabolite profile of diseased cartilage has been well studied but there is limited information about the variation in metabolite profile of healthy cartilage. With the importance of load in maintaining healthy cartilage, regional differences in metabolite profile associated with differences in load may provide information on how load contributes to the maintenance of healthy cartilage. HR-MAS NMR spectroscopy allows the assessment of tissue samples without modification and was used for assessing the difference in metabolic profile between the load bearing and non-load bearing regions of the bovine articular cartilage. In this preliminary study, we examined cartilage from tibia and femur of four knee joints. Sixteen pairs of 1D-NOESY spectra were acquired. Principle component analysis (PCA) identified chemical shifts responsible for variance. SBASE (AMIX) and the Human Metabolome Database were used in conjunction with previous reported cartilage data for identifying metabolites associated with the PCA results. The major contributors to load-related differences in metabolite profile were N-acetyl groups, lactate and phosphocholine peaks. Integrals of these regions were further analysed using a Student's t-test. In load bearing cartilage regions. N-acetyl groups and phosphocholine were found at significantly higher concentration (p < 0.05 and p < 0.005, respectively) in both femur and tibia, while lactate was reduced in load bearing cartilage (p < 0.005). The results of this pilot HR-MAS NMR study demonstrate its ability to provide useful metabolite information for healthy cartilage.