938 resultados para relative sidelobe peak intensity
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The narrow stripe selective growth of the InGaAlAs bulk waveguides and InGaAlAs MQW waveguides was first investigated. Flat and clear interfaces were obtained for the selectively grown InGaAlAs waveguides under optimized growth conditions. These selectively grown InGaAlAs waveguides were covered by specific InP layers, which can keep the waveguides from being oxidized during the fabrication of devices. PL peak wavelength shifts of 70 nm for the InGaAlAs bulk waveguides and 73 nm for the InGaAlAs MQW waveguides were obtained with a small mask stripe width varying from 0 to 40 gm, and were interpreted in considering both the migration effect from the masked region (MMR) and the lateral vapor diffusion effect (LVD). The quality of the selectively grown InGaAlAs MQW waveguides was confirmed by the PL peak intensity and the PL FWHM. Using the narrow stripe selectively grown InGaAlAs MQW waveguides, then the buried heterostructure (BH) lasers were fabricated by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good performance characteristics, with a high internal differential quantum efficiency of about 85% and an internal loss of 6.7 cm(-1).
Resumo:
Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper shows that waveguides induced by grey screening-photovoltaic solitons are always single mode for all intensity ratios, which are the ratio between the peak intensity of the soliton and the dark irradiance. It finds that the confined energy near the centre of the grey soliton and the propagation constant of the guided mode increase monotonically with increasing intensity ratio. On the other hand, when the soliton greyness increases, the confined energy near the centre of the grey soliton and the propagation constant of the guided mode reduce monotonically. When the bulk photovoltaic effect is neglected for short circuits, these waveguides become waveguides induced by grey screening solitons. When the external bias field is absent, these waveguides become waveguides induced by grey photovoltaic solitons.
Resumo:
Waveguides induced by one-dimensional spatial photovoltaic solitons are investigated in both self-defocusing-type and self-focusing-type photorefractive photovoltaic materials. The number of possible guided modes in a waveguide induced by a bright photovoltaic soliton is obtained using numerical techniques. This number of guided modes increases monotonically with increasing intensity ratio, which is the ratio between the peak intensity of the soliton and the sum of the background illumination and the dark irradiance. On the other hand, waveguides induced by dark photovoltaic solitons are always single mode for all intensity ratios, and the higher the intensity ratio, the more confined is the optical energy near the centre of the dark photovoltaic soliton. Relevant examples are provided where photorefractive photovoltaic materials are of self-defocusing and self-focusing types. The properties of soliton-induced waveguides in both self-defocusing-type and self-focusing-type materials are also discussed.
Resumo:
We investigate theoretically waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals. We show that the number of guided modes in a waveguide induced by a bright screening-photovoltaic soliton increases monotonically with the increasing intensity ratio of the soliton, which is the ratio between the peak intensity of the soliton and the dark irradiance. On the other hand, waveguides induced by dark screening-photovoltaic solitons are always single mode for all intensity ratios and the confined energy near the centre of a dark screening-photovoltaic soliton increases monotonically with the increasing intensity ratio. When the bulk photovoltaic effect is neglectable, these waveguides are those induced by screening solitons. When the external field is absent, these waveguides predict those induced by photovoltaic solitons.
Resumo:
We have investigated the Wannier-Stark effect in GaAs/GaAl1-xAs superlattices under electric fields by photocurrent spectroscopy measurements in the range of temperatures 10-300 K. The linewidth of the Oh Stark-ladder exciton was found to increase significantly along with an increase in peak intensity when the electric field increases. We present a mechanism based on an enhanced interface roughness scattering of electronic states due to Wannier-Stark localization in order to explain this increased broadening with electric field. This electric-field-related scattering mechanism will weaken the negative differential conductance effects in superlattices predicted by Esaki and Tsu.
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest [110] directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation, A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Resumo:
The growth of GaInNAs/GaAs quantum wells (QW) was investigated by solid-source molecular beam epitaxy. N was introduced by a dc-active plasma source. The effect of growth conditions such as on the N incorporation and photoluminescence (PL) intensity of the QWs has been studied. The PL peak intensity decreased and the PL fun width at half maximum increased with increasing N concentrations. The highest N concentration of 2.6% in a GaInNAs/GaAs QW was obtained, and corresponding to a PL peak wavelength of 1.57 mum at 10K. Rapid thermal annealing at 850degreesC significantly improved the crystal quality of the QWs. An optimum annealing time of 5s at 850degreesC was obtained. A GaInNAs/GaAs SQW laser with the emitting wavelength of 1.2 mum and a high characteristic temperature of 115 K was achieved at room temperature.
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
CLIGEN是目前较全面产生降水要素(降水量、历时、达到最大降水强度的时间与降水总历时的比率、最大降水强度与平均降水强度的比率)的天气发生器,其生成降水要素的质量直接影响水文和农业响应模型的输出结果。利用黄土高原长武1957—2001年的日气象观测数据、王东沟流域1988—2001年的降水要素数据和CLIGEN生成的100年日气象数据,对CLIGEN模型产生日、月、年降水量的均值和方差、概率分布、降水极端值和降水历时、强度进行评估。结果表明:CLIGEN对日、月和年降水量均值的模拟效果较好,相对误差都不大于1.0%;对标准差的模拟结果偏低,相对误差的绝对值小于6.6%;没有模拟出日降水量的概率分布,但是较好地模拟出了月和年降水量的概率分布;对日、月和年最大降水量的模拟误差较大,表明CLIGEN对极值的模拟精度有待提高。CLIGEN很好地模拟出连续降水的频率,但是连续干旱天数在20 d以内的累积频率的平均相对误差为8.9%;CLIGEN产生的最大降水强度与平均降水强度的比率高于实测数据;相对于实测数据,CLIGEN模拟的降水历时和降水量具有相同的趋势,对小降水量或短历时的模拟结果偏高,对大降水量或长历时的模拟结...
Resumo:
A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.
Resumo:
Stannic oxide xerogel was prepared by a forced hydrolysis method using SnCl4 as the precursor. The average grain sizes of the nanosized stannic oxide powders varied with the sintering temperatures. The powders were characterized by several different physico-chemical techniques. TEM was employed for the direct observation on grain sizes, shape and state of aggregation of the particles. XRD technique was used for the determination of the crystalline structure. Microstructural parameters of average crystallite size (