920 resultados para radial basis functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a gaussian function obtained through the characteristic of the bipolar differential pair. The gaussian parameters (gain, center and width) is changed with programmable current source. Results obtained with PSPICE software is showed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reverse Monte Carlo (RMC) method generates sets of points in space which yield radial distribution functions (RDFS) that approximate those of the system of interest. Such sets of configurations should, in principle, be sufficient to determine the structural properties of the system. In this work we apply the RMC technique to fluids of hard diatomic molecules. The experimental RDFs of the hard-dimer fluid were generated by the conventional MC method and used as input in the RMC simulations. Our results indicate that the RMC method is only satisfactory in determining the local structure of the fluid studied by means of only mono-variable RDF. Also we suggest that the use of multi-variable RDFs would improve the technique significantly. However, the accuracy of the method turned out to be very sensitive to the variance of the input experimental RDF. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A radial basis function network (RBFN) circuit for function approximation is presented. Simulation and experimental results show that the network has good approximation capabilities. The RBFN was a squared hyperbolic secant with three adjustable parameters amplitude, width and center. To test the network a sinusoidal and sine function,vas approximated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a radial basis function based extension to a recently proposed variational algorithm for approximate inference for diffusion processes. Inference, for state and in particular (hyper-) parameters, in diffusion processes is a challenging and crucial task. We show that the new radial basis function approximation based algorithm converges to the original algorithm and has beneficial characteristics when estimating (hyper-)parameters. We validate our new approach on a nonlinear double well potential dynamical system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For decades scientists have attempted to use ideas of classical mechanics to choose basis functions for calculating spectra. The hope is that a classically-motivated basis set will be small because it covers only the dynamically important part of phase space. One popular idea is to use phase space localized (PSL) basis functions. This thesis improves on previous efforts to use PSL functions and examines the usefulness of these improvements. Because the overlap matrix, in the matrix eigenvalue problem obtained by using PSL functions with the variational method, is not an identity, it is costly to use iterative methods to solve the matrix eigenvalue problem. We show that it is possible to circumvent the orthogonality (overlap) problem and use iterative eigensolvers. We also present an altered method of calculating the matrix elements that improves the performance of the PSL basis functions, and also a new method which more efficiently chooses which PSL functions to include. These improvements are applied to a variety of single well molecules. We conclude that for single minimum molecules, the PSL functions are inferior to other basis functions. However, the ideas developed here can be applied to other types of basis functions, and PSL functions may be useful for multi-well systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations.