Modelling water droplet movement on a leaf surface
Data(s) |
2009
|
---|---|
Resumo |
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface. |
Formato |
application/pdf application/pdf |
Identificador | |
Publicador |
Queensland University of Technology |
Relação |
http://eprints.qut.edu.au/30232/1/Moa%27ath_Oqielat_Thesis.pdf http://eprints.qut.edu.au/30232/2/Moa%27ath_Oqielat_Citation.pdf Oqielat, Moa'ath Nasser (2009) Modelling water droplet movement on a leaf surface. PhD by Publication, Queensland University of Technology. |
Fonte |
Faculty of Science and Technology; Mathematical Sciences |
Palavras-Chave | #surface fitting, finite elements methods, radial basis functions, Clough-Tocher method, Interpolation method, extrapolation method, virtual leaf, virtual plants, truncated Taylor series, weighted least squares, physical based modelling #thin-film approximation |
Tipo |
Thesis |