836 resultados para push-out
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
To evaluate the effectiveness of isopropyl alcohol, saline or distilled water to prevent the precipitate formed between sodium hypochlorite (NaOCl) and chlorhexidine (CHX) and its effect on the bond strength of an epoxy-based sealer in radicular dentine. Methodology The root canals of 50 extracted human canines (n = 10) were instrumented. In G1, root canals were irrigated with 17% EDTA and 2.5% NaOCl; G2, as G1, except that 2% CHX was used as the final irrigant. In the other groups, intermediate flushes with isopropyl alcohol (G3), saline (G4) or distilled water (G5) were used between NaOCl and CHX. The specimens were submitted to SEM analysis to evaluate the presence of debris and smear layer, in the apical and cervical segments. In sequence, fifty extracted human canines were distributed into five groups (n = 10), similar to the SEM study. After root filling, the roots were sectioned transversally to obtain dentine slices, in the cervical, middle and apical thirds. The root filling was submitted to a push-out bond strength test using an electromechanical testing machine. Statistical analysis was performed using Kruskal–Wallis and Dunn's tests (α = 5%). Results All groups had similar amounts of residue precipitated on the canal walls (P > 0.05). The push-out bond strength values were similar for all groups, independently of the root third evaluated (P > 0.05). Conclusions Isopropyl alcohol, saline and distilled water failed to prevent the precipitation of residues on canal walls following the use of NaOCl and CHX. The residues did not interfere with the push-out bond strength of the root filling.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effect of the insertion technique for resin cement and mechanical cycling on the bond strength between fiber posts and root dentin.Materials and Methods: Sixty-four single-rooted bovine teeth were endodontically prepared to receive glass-fiber posts. The insertion of cement into the root canal was performed using one of the following techniques: POS, insertion with the post; LEN, the use of a lentulo-type drill; EXP, insertion with a straight-tip explorer; or CEN, the use of a Centrix syringe. Half of the specimens were mechanically cycled. All specimens were sectioned into slices of 1.8 mm for the push-out test and 0.5 mm for analysis of the cement layer quality.Results: The insertion technique affected the interaction between factors (bond strength and mechanical cycling; p < 0.0001). Insertion of the Centrix syringe after mechanical cycling showed the highest bond values (13.6 +/- 3.2 MPa). Group-to-group comparisons for baseline and cycled conditions indicated that mechanical cycling significantly influenced the bond strength (p < 0.0001) of the POS and CEN groups. The quality of the cement layer did not differ between the techniques when evaluated in the middle (p = 0.0612) and cervical (p = 0.1119) regions, but did differ in the apical region (p = 0.0097), where the CEN group had better layer quality for the two conditions tested (baseline and cycled).Conclusion: The use of the Centrix syringe improved the homogeneity of the cement layer, reducing the defects in the layer and increasing adhesive strength values to dentin, even after mechanical cycling.
Resumo:
Objectives. To compare three different designs for measuring the bond strength between Y-TZP ceramic and a composite material, before and after ceramic surface treatment, evaluating the influence of the size of the adhesive interface for each design.Methods. 'Macro'tensile, microtensile, 'macro'shear, microshear, 'macro'push-out, and micropush-out tests were carried out. Two Y-TZP surface treatments were evaluated: silanization (sil) and tribochemical silica coating (30 mu m silica-modified Al2O3 particles + silanization) (TBS). Failure mode analysis of tested samples was also performed. Results. Both the surface treatment and the size of the bonded interface significantly affected the results (p = 0.00). Regardless of the type of surface treatment, the microtensile and microshear tests had higher values than their equivalent "macro" tests. However, the push-out test showed the highest values for the "macro" test. The tensile tests showed the greatest variability in results. The tribochemical silica coating method significantly increased bond strength for all tests.Significance. Different test designs can change the outcome for Y-TZP/cement interfaces, in terms of mean values and reliability (variability). The 'micro'tests expressed higher bond strengths than their equivalent 'macro'tests, with the exception of the push-out test (macro > micro). (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper shows the results of an experimental investigation carried out on a connection element of glulam and concrete composite structures, through double-sided push-out shear tests. The connection system was composed of perforated steel plates glued with epoxy adhesive. Five specimens were made and tested under shear forces. This innovative connection system showed an average initial slip modulus equivalent to 339.4 kN/mm. In addition, the connection system was evaluated by means of numerical simulations and the software ANSYS was used for this purpose. The numerical simulations demonstrated good agreement with the experimental data, especially in the regime of elastic-linear behavior of materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem: Resin cements are widely used to cement intraradicular posts, but bond strength is significantly influenced by the technique and material used for cementation. Purpose: The purpose of this study was to evaluate the bond strength of 3 self-adhesive cements used to cement intraradicular glass fiber posts. The cements all required different application and handling techniques. Material and Methods: Forty-five human maxillary canines were selected and randomly divided into 3 groups n= 15 by drawing lots: Group BIS – Biscem, Group BRE – Breeze, and Group MAX – Maxcem. Each group was divided into 3 subgroups according to application and handling techniques: Sub-group A – Automix/Point tip applicator, Sub-group L – Handmix/Lentulo, and Sub-group C – Handmix/Centrix. Cementation of the posts was performed according to the manufacturers’ instructions. The push-out test was performed with a crosshead speed of 0.5 mm/min, and bond strength was expressed in megapascals. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (?=.05). Results: Breeze cement showed the highest average for the subgroups A, L, and C when compared to the Biscem cement and Maxcem Elite (P<.05). Statistically significant differences among the subgroups were only observed for Biscem. Conclusions: This study shows that application and handling techniques may influence the bond strength of different self-adhesive cements when used for intraradicular post cementation.
Resumo:
Aim: To assess the immediate influence of dentine bonding systems (DBS) associated with 2% chlorhexidine digluconate (CHX) on glass-fibre post-bond strength to root dentine, in terms of coronal, middle and apical thirds. Methodology: Sixty bovine roots were root filled and randomly assigned to 1 of 6 groups (n = 10): SBMP (3-step etch-and-rinse system, Scotchbond Multi-Purpose), SB (2-step etch-and-rinse system, Single Bond 2), SE (2-step self-etching system, Clearfil SE Bond) and SBMP-CHX, SB-CHX and SE-CHX, respectively, associated with CHX. For all groups, a glassfibre post was luted with a dual-cure resin cement, RelyX ARC. After 7-day storage, specimens were subjected to the push-out test. Failure modes were analysed under optical microscopy (40x). Bond strength values were statistically analysed by two-way ANOVA and Bonferroni tests (P < 0.05). Results: The effect of DBS was significant (P < 0.05), and SE reached higher bond strength in comparison with the other DBS tested. CHX association did not show improvement with any DBS (P > 0.05); rather, it negatively affected SE, which was detected for all thirds. There was no difference between thirds (P > 0.05), except for the SE-CHX, which presented lower values for the apical third (P < 0.05). Adhesive cement/dentine adhesive failure was predominant for all groups. CHX did not influence the failure mode for any DBS (P > 0.05). Conclusions: The performance of the dentine bonding systems was material dependent. CHX did not improve immediate bond strength; however, CHX negatively affected the bond strength of the self-etching system, especially in the third apical
Resumo:
Structural and functional characterization of integrative cartilage repair in controlled model systems can play a key role in the development of innovative strategies to improve the long-term outcome of many cartilage repair procedures. In this work, we first developed a method to reproducibly generate geometrically defined disk/ring cartilage composites and to remove outgrown fibrous layers which can encapsulate cartilaginous tissues during culture. We then used the model system to test the hypothesis that such fibrous layers lead to an overestimation of biomechanical parameters of integration at the disk/ring interface. Transmission electron microscopy images of the composites after 6 weeks of culture indicated that collagen fibrils in the fibrous tissue layer were well integrated into the collagen network of the cartilage disk and ring, whereas molecular bridging between opposing disk/ring cartilage surfaces was less pronounced and restricted to regions with narrow interfacial regions (< 2 microm). Stress-strain profiles generated from mechanical push-out tests for composites with the layers removed displayed a single and distinct peak, whereas profiles for composites with the layers left intact consisted of multiple superimposed peaks. As compared to composites with removed layers, composites with intact layers had significantly higher adhesive strengths (161+/-9 vs. 71+/-11 kPa) and adhesion energies (15.0+/-0.7 vs. 2.7+/-0.4 mJ/mm2). By combining structural and functional analyses, we demonstrated that the outgrowing tissue formed during in vitro culture of cartilaginous specimens should be eliminated in order to reliably quantify biomechanical parameters related to integrative cartilage repair.
Resumo:
End caps are intended to prevent nail migration (push-out) in elastic stable intramedullary nailing. The aim of this study was to investigate the force at failure with and without end caps, and whether different insertion angles of nails and end caps would alter that force at failure. Simulated oblique fractures of the diaphysis were created in 15 artificial paediatric femurs. Titanium Elastic Nails with end caps were inserted at angles of 45°, 55° and 65° in five specimens for each angle to create three study groups. Biomechanical testing was performed with axial compression until failure. An identical fracture was created in four small adult cadaveric femurs harvested from two donors (both female, aged 81 and 85 years, height 149 cm and 156 cm, respectively). All femurs were tested without and subsequently with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly different between the three groups (p = 0.613). Push-out force was significantly higher in the cadaveric specimens with the use of end caps by an up to sixfold load increase (830 N, standard deviation (SD) 280 vs 150 N, SD 120, respectively; p = 0.007). These results indicate that the nail and end cap insertion angle can be varied within 20° without altering construct stability and that the risk of elastic stable intramedullary nailing push-out can be effectively reduced by the use of end caps.