920 resultados para predictive regression model
Resumo:
Purpose: Refractory frontal lobe epilepsy (FLE) remains one of the most challenging surgically remediable epilepsy syndromes. Nevertheless, definition of independent predictors and predictive models of postsurgical seizure outcome remains poorly explored in FLE. Methods: We retrospectively analyzed data from 70 consecutive patients with refractory FLE submitted to surgical treatment at our center from July 1994 to December 2006. Univariate results were submitted to logistic regression models and Cox proportional hazards regression to identify isolated risk factors for poor surgical results and to construct predictive models for surgical outcome in FLE. Results: From 70 patients submitted to surgery, 45 patients (64%) had favorable outcome and 37 (47%) became seizure free. Isolated risk factors for poor surgical outcome are expressed in hazard ratio (H.R.) and were time of epilepsy (H.R.=4.2; 95% C.I.=.1.5-11.7; p=0.006), ictal EEG recruiting rhythm (H.R. = 2.9; 95% C.I. = 1.1-7.7; p=0.033); normal MRI (H.R. = 4.8; 95% C.I. = 1.4-16.6; p = 0.012), and MRI with lesion involving eloquent cortex (H.R. = 3.8; 95% C.I. = 1.2-12.0; p = 0.021). Based on these variables and using a logistic regression model we constructed a model that correctly predicted long-term surgical outcome in up to 80% of patients. Conclusion: Among independent risk factors for postsurgical seizure outcome, epilepsy duration is a potentially modifiable factor that could impact surgical outcome in FLE. Early diagnosis, presence of an MRI lesion not involving eloquent cortex, and ictal EEG without recruited rhythm independently predicted favorable outcome in this series. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Abstract Background Patients under haemodialysis are considered at high risk to acquire hepatitis B virus (HBV) infection. Since few data are reported from Brazil, our aim was to assess the frequency and risk factors for HBV infection in haemodialysis patients from 22 Dialysis Centres from Santa Catarina State, south of Brazil. Methods This study includes 813 patients, 149 haemodialysis workers and 772 healthy controls matched by sex and age. Serum samples were assayed for HBV markers and viraemia was detected by nested PCR. HBV was genotyped by partial S gene sequencing. Univariate and multivariate statistical analyses with stepwise logistic regression analysis were carried out to analyse the relationship between HBV infection and the characteristics of patients and their Dialysis Units. Results Frequency of HBV infection was 10.0%, 2.7% and 2.7% among patients, haemodialysis workers and controls, respectively. Amidst patients, the most frequent HBV genotypes were A (30.6%), D (57.1%) and F (12.2%). Univariate analysis showed association between HBV infection and total time in haemodialysis, type of dialysis equipment, hygiene and sterilization of equipment, number of times reusing the dialysis lines and filters, number of patients per care-worker and current HCV infection. The logistic regression model showed that total time in haemodialysis, number of times of reusing the dialysis lines and filters, and number of patients per worker were significantly related to HBV infection. Conclusions Frequency of HBV infection among haemodialysis patients at Santa Catarina state is very high. The most frequent HBV genotypes were A, D and F. The risk for a patient to become HBV positive increase 1.47 times each month of haemodialysis; 1.96 times if the dialysis unit reuses the lines and filters ≥ 10 times compared with haemodialysis units which reuse < 10 times; 3.42 times if the number of patients per worker is more than five. Sequence similarity among the HBV S gene from isolates of different patients pointed out to nosocomial transmission.
Resumo:
The ectoparasitic mite Varroa destructor acting as a virus vector constitutes a central mechanism for losses of managed honey bee, Apis mellifera, colonies. This creates demand for an easy, accurate and cheap diagnostic tool to estimate the impact of viruliferous mites in the field. Here we evaluated whether the clinical signs of the ubiquitous and mite-transmitted deformed wing virus (DWV) can be predictive markers of winter losses. In fall and winter 2007/2008, A.m. carnica workers with apparent wing deformities were counted daily in traps installed on 29 queenright colonies. The data show that colonies which later died had a significantly higher proportion of workers with wing deformities than did those which survived. There was a significant positive correlation between V. destructor infestation levels and the number of workers displaying DWV clinical signs, further supporting the mite's impact on virus infections at the colony level. A logistic regression model suggests that colony size, the number of workers with wing deformities and V. destructor infestation levels constitute predictive markers for winter colony losses in this order of importance and ease of evaluation.
Resumo:
A historical prospective study was designed to assess the man weight status of subjects who participated in a behavioral weight reduction program in 1983 and to determine whether there was an association between the dependent variable weight change and any of 31 independent variables after a 2 year follow-up period. Data was obtained by abstracting the subjects records and from a follow-up questionnaire administered 2 years following program participation. Five hundred nine subjects (386 females and 123 males) of 1460 subjects who participated in the program, completed and returned the questionnaire. Results showed that mean weight was significantly different (p < 0.001) between the measurement at baseline and after a 2 year follow-up period. The mean weight loss of the group was 5.8 pounds, 10.7 pounds for males and 4.2 pounds for females after a 2 year follow-up period. A total of 63.9% of the group, 69.9% of males and 61.9% of females were still below their initial weight after the 2 year follow-up period. Sixteen of the 31 variables assessed utilizing bivariate analyses were found to be significantly (p (LESSTHEQ) 0.05) associated with weight change after a 2 year follow-up period. These variables were then entered into a multivariate linear regression model. A total of 37.9% of the variance of the dependent variable, weight change, was accounted for by all 16 variables. Eight of these variables were found to be significantly (p (LESSTHEQ) 0.05) predictive of weight change in the stepwise multivariate process accounting for 37.1% of the variance. These variables included: Two baseline variables (percent over ideal body weight at enrollment and occupation) and six follow-up variables (feeling in control of eating habits, percent of body weight lost during treatment, frequency of weight measurement, physical activity, eating in response to emotions, and number of pounds of weight gain needed to resume a diet). It was concluded that a greater amount of emphasis should be placed on the six follow-up variables by clinicians involved in the treatment of obesity, and by the subjects themselves to enhance their chances of success at long-term weight loss. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
Background: Intravenous (IV) fluid administration is an integral component of clinical care. Errors in administration can cause detrimental patient outcomes and increase healthcare costs, although little is known about medication administration errors associated with continuous IV infusions. Objectives: ( 1) To ascertain the prevalence of medication administration errors for continuous IV infusions and identify the variables that caused them. ( 2) To quantify the probability of errors by fitting a logistic regression model to the data. Methods: A prospective study was conducted on three surgical wards at a teaching hospital in Australia. All study participants received continuous infusions of IV fluids. Parenteral nutrition and non-electrolyte containing intermittent drug infusions ( such as antibiotics) were excluded. Medication administration errors and contributing variables were documented using a direct observational approach. Results: Six hundred and eighty seven observations were made, with 124 (18.0%) having at least one medication administration error. The most common error observed was wrong administration rate. The median deviation from the prescribed rate was 247 ml/h (interquartile range 275 to + 33.8 ml/ h). Errors were more likely to occur if an IV infusion control device was not used and as the duration of the infusion increased. Conclusions: Administration errors involving continuous IV infusions occur frequently. They could be reduced by more common use of IV infusion control devices and regular checking of administration rates.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.
Resumo:
We reviewed the data of 307 patients treated with autologous bone marrow transplantation with the aim to identify factors associated with poor hematopoietic stern cell (HSC) mobilization after administration of cyclophosphamide and granulocyte-colony stimulating factor. Success in mobilization was defined when >= 2.0 x 10(6) CD34+ cells/kg weight could be collected with <= 3 leukapheresis procedures. Success was observed in 260 patients (84.7%) and nonsuccess in 47 patients (15.3%). According to the stepwise regression model: diagnosis, chemotherapy load, treatment with mitoxantrone and platelet count before mobilization were found to be independent predictive factors for HSC mobilization. These results could help in the previous recognition of patients at risk for non response to mobilization and allow to plan an alternative protocol for this group of patients. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Alcoholic beverages may have protective cardiovascular effects but are known to increase the plasma levels of triglycerides (TG). Both TG and the ratio of TO to high-density lipoprotein cholesterol (TG/HDL-cholesterol) are associated with increased cardiovascular risk. OBJECTIVES: To determine the predictive factors for variations in plasma levels of TO and the TG/HDL-cholesterol ratio in patients after they had consumed red wine for 14 days. METHODS: Forty-two subjects (64% men, 46 +/- 9 years, baseline body mass index [BMI] 25.13 +/- 2.76 kg/m(2)) were given red wine (12% or 12.2% alc/vol, 250 mL/day with meals). Plasma concentration of lipids and glucose were measured before and after red wine consumption. Blood was collected after 12 hours of fast and alcohol abstention. RESULTS: Red wine increased plasma levels of TO from 105 +/- 42 mg/dL to 120 +/- 56 mg/dL (P = .001) and the TG/HDL-cholesterol ratio from 2.16 +/- 1.10 to 2.50 +/- 1.66 (P = .014). In a multivariate linear regression model that included age, baseline BMI, blood pressure, lipids, and glucose, only BMI was independently predictive of the variation in plasma TO after red wine (beta coefficient 0.592, P < .001). BMI also predicted the variation in TG/HDL-cholesterol ratio (beta coefficient 0.505, P = .001, adjusted model). When individuals were divided into three categories, according to their BMI, the average percentage variation in TG after red wine was -4%, 17%, and 33% in the lower (19.60-24.45 kg/m(2)), intermediate, and greater (26.30-30.44 kg/m(2)) tertiles, respectively (P = .001). CONCLUSIONS: Individuals with higher BMI, although nonobese, might be at greater risk for elevation in plasma TO levels and the TG/HDL-cholesterol ratio after short-term red wine consumption. (C) 2011 National Lipid Association. All rights reserved.