890 resultados para pre-clinical drug testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and Aims Wastewater analysis (WWA) is intended to be a direct and objective method of measuring substance use in large urban populations. It has also been used to measure prison substance use in two previous studies. The application of WWA in this context has raised questions as to how best it might be used to measure illicit drug use in prisons, and whether it can also be used to measure prescription misuse. We applied WWA to a small regional prison to measure the use of 12 licit and illicit substances. We attempted to measure the non-medical use of methadone and buprenorphine and to compare our findings with the results of the prison's mandatory drug testing (MDT). Design and Methods Representative daily composite samples were collected for two periods of 12 consecutive days in May to July 2013 and analysed for 18 drug metabolites. Prescription data and MDT results were obtained from the prison and compared with the substance use estimates calculated from WWA data. Results Daily use of methamphetamine, methadone, buprenorphine and codeine was detected, while sporadic detection of ketamine and methylone was also observed. Overall buprenorphine misuse appeared to be greater than methadone misuse. Discussion and Conclusions Compared with MDT, WWA provides a more comprehensive picture of prison substance use. WWA also has the potential to measure the misuse of medically prescribed substances. However, a great deal of care must be exercised in quantifying the usage of any substance in small populations, such as in prisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to identify and describe the types of errors in clinical reasoning that contribute to poor diagnostic performance at different levels of medical training and experience. Three cohorts of subjects, second- and fourth- (final) year medical students and a group of general practitioners, completed a set of clinical reasoning problems. The responses of those whose scores fell below the 25th centile were analysed to establish the stage of the clinical reasoning process - identification of relevant information, interpretation or hypothesis generation - at which most errors occurred and whether this was dependent on problem difficulty and level of medical experience. Results indicate that hypothesis errors decrease as expertise increases but that identification and interpretation errors increase. This may be due to inappropriate use of pattern recognition or to failure of the knowledge base. Furthermore, although hypothesis errors increased in line with problem difficulty, identification and interpretation errors decreased. A possible explanation is that as problem difficulty increases, subjects at all levels of expertise are less able to differentiate between relevant and irrelevant clinical features and so give equal consideration to all information contained within a case. It is concluded that the development of clinical reasoning in medical students throughout the course of their pre-clinical and clinical education may be enhanced by both an analysis of the clinical reasoning process and a specific focus on each of the stages at which errors commonly occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimising chemotherapy dose density and dose intensity are strategies aimed at improving outcomes in adjuvant therapy for patients with breast cancer. There are, in theory, at least five models allowing the delivery of a higher overall drug dose intensity. These are reviewed in this article and vary according to three main variables: the dose per course, the interval between doses and the total cumulative dose. Cyclophosphamide, anthracyclines and taxanes are among the most active agents for the treatment of breast cancer and, as such, they have been or are currently the focus of prospective, randomised clinical trials testing some of these dose-intensity models in the adjuvant setting. The results of recent trials suggest that anthracyclines, but not cyclophosphamide, are associated with better outcomes if used at higher doses per course and at higher cumulative doses. However, care has to be taken with premenopausal women where an increased dose of anthracycline per course but a reduced cumulative dose appears to produce a worse outcome. Moreover, decreasing the interval between doses, for anthracyclines and cyclophosphamide, does not seem to provide, so far, additional benefits for women with locally advanced breast cancer. This approach is not feasible with docetaxel, since an increase in dose density induces unwanted side-effects. These results represent our current state of knowledge, but clinical trials are being performed to evaluate further the effect of dose intensity, dose density and cumulative dose of key therapeutic agents on patient outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress analysis of the cement fixation of orthopaedic implants to bone is frequently? carried out using finite element analysis. However, the stress distribution in the cement laver is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stein tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However; if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stein generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stein. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop a predictive model for adverse drug events (ADEs) in elderly patients. Socio-demographic and medical data were collected from chart reviews, computerised information and a patient interview, for a population of 929 elderly patients (aged greater than or equal to 65 years) whose admission to the Waveney/B raid Valley Hospital in Northern Ireland was not scheduled. A further 204 patients formed a validation group. An ADE score was assigned to each patient using a modified Naranjo algorithm scoring system. The ADE scores ranged from 0 to 8. For the purposes of developing a risk model, scores of 4 or more were considered to constitute a high risk of an ADE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis and therapeutic intervention based on improved patient stratification. Relevant pre-clinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML) and a conditional transplantation mouse model was developed that demonstrated oncogene-dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity Map (sscMap) analysis identified Entinostat as a drug with the potential to alter the leukemic condition towards the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML. © 2013 AlphaMed Press

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs) in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations.

Methods: To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis.

Results: Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1b/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia.

Conclusions: This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Pre-clinical studies suggest that oral anticoagulant agents, such as warfarin, may inhibit metastases and potentially prolong survival in cancer patients. However, few population-based studies have examined the association between warfarin use and cancer-specific mortality.

METHODS: Using prescribing, cause of death, and cancer registration data from the UK Clinical Practice Research Datalink, four population-based cohorts were constructed, comprising breast, colorectal, lung, and prostate cancer patients diagnosed between 1 January 1998, and the 31 December 2010. Comparing pre-diagnostic warfarin users to non-users, multivariable Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for cancer-specific mortality.

RESULTS: Overall, 16,525 breast, 12,902 colorectal, 12,296 lung, and 12,772 prostate cancers were included. Pre-diagnostic warfarin use ranged from 2.4 to 4.7 %. There was little evidence of any strong association between warfarin use pre-diagnosis and cancer-specific mortality in prostate (adjusted HR 1.03, 95 % CI 0.84-1.26), lung (adjusted HR 1.06, 95 % CI 0.96-1.16), breast (adjusted HR 0.81, 95 % CI 0.62-1.07), or colorectal (adjusted HR 0.88, 95 % CI 0.77-1.01) cancer patients. Dose-response analyses did not reveal consistent evidence of reductions in users of warfarin defined by the number of prescriptions used and daily defined doses.

CONCLUSIONS: There was little evidence of associations between pre-diagnostic use of warfarin and cancer-specific mortality in lung, prostate, breast, or colorectal cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian cancer is the most lethal gynecological malignancy, primarily because its origin and initiation factors are unknown. A secretory murine oviductal epithelial (MOE) model was generated to address the hypothesis that the fallopian tube is an origin for high-grade serous cancer. MOE cells were stably altered to express mutation in p53, silence PTEN, activate AKT, and amplify KRAS alone and in combination, to define if this cell type gives rise to tumors and what genetic alterations are required to drive malignancy. Cell lines were characterized in vitro and allografted into mice. Silencing PTEN formed high-grade carcinoma with wide spread tumor explants including metastasis into the ovary. Addition of p53 mutation to PTEN silencing did not enhance this phenotype, whereas addition of KRAS mutation reduced survival. Interestingly, PTEN silencing and KRAS mutation originating from ovarian surface epithelium generated endometrioid carcinoma, suggesting that different cellular origins with identical genetic manipulations can give rise to distinct cancer histotypes. Defining the roles of specific signaling modifications in tumorigenesis from the fallopian tube/oviduct is essential for early detection and development of targeted therapeutics. Further, syngeneic MOE allografts provide an ideal model for pre-clinical testing in an in vivo environment with an intact immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.

Prostate cancer (CaP) is the most commonly diagnosed cancer in males and is responsible for more than 10,000 deaths each year in the UK.1 Technical advances in radiotherapy delivery, including image-guided intensity-modulated radiotherapy (IG-IMRT), have enabled the delivery of higher radiation dose to the prostate, which has led to improved biochemical control. Further improvements in cancer imaging during radiotherapy are being developed with the advent of MRI simulators and MRI linear accelerators.2–4

Nanotechnology promises to deliver significant advancements across numerous disciplines.5 The widest scope of applications are from the biomedical field including exogenous gene/drug delivery systems, advanced biosensors, targeted contrast agents for diagnostic applications and as direct therapeutic agents used in combination with existing treatment modalities.6–11 This diversity of application is especially evident within cancer research, with a myriad of experimental anticancer strategies currently under investigation.

This review will focus specifically on the potential of metal-based nanoparticles to augment the efficacy of radiotherapy in CaP, a disease where radiotherapy constitutes a major curative treatment modality.12 Furthermore, we will also address the clinical state of the art for CaP radiotherapy and consider how these treatments could be best combined with nanotherapeutics to improve cancer outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two hundred seven vitamin A-deficient southern Indian children aged 1-7 y (mean age: 56.9 mo) underwent testing of dark-adapted visual and pupillary thresholds in their village setting according to a previously reported protocol. One hundred thirty (62.8%) of the children also underwent serum retinol testing, and 178 (86.0%) participated in a randomized, placebo-controlled vitamin A dosing trial with pre- and postdose testing of dark-adaptation threshold. Most subjects (184 of 207, 88.9%) were able to complete pupillary testing, an objective sign requiring minimal cooperation, including a high proportion of the youngest children (72.2% of subjects aged 2 y). The proportion of children completing visual threshold testing, which requires greater understanding and cooperation, was significantly smaller than that able to complete pupillary testing (131 of 207, 63.3%; P < 0.0001, chi square). At baseline (predosing), the mean serum retinol concentration declined in linear fashion with a higher pupillary threshold (0.73 mumol/L with a score < or = 4; 0.47 mumol/L with a score > or = 8; P < 0.01). The mean pupillary threshold for these highly vitamin A-deficient Indian children (-0.622 log cd/m2) was significantly higher than that for 136 more moderately deficient Indonesian children (-0.985 log cd/m2; P < 0.001, two-sample t test) and 56 normal American children (-1.335 log cd/m2; P < 0.0001, two-sample t test). The improvement in pupillary dark-adaptation testing was not significant for children receiving vitamin A or placebo, though there was a nonsignificant trend toward greater improvement in children receiving vitamin A (P = 0.2, two-sample t test). Pupillary threshold testing represents a new, noninvasive, practical, and seemingly valid approach to assessing the vitamin A status of a moderately to severely deficient preschool population.