869 resultados para novel dual-slab laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了基于干涉测量激光介质热畸变的原理,利用CCD摄像机记录干涉条纹并通过计算机图像处理,来测量板条激光介质动态热畸变的方法。对采集得到的干涉条纹进行图像处理,提出了一种简单快速提取条纹中心的算法。通过分析、计算干涉条纹的移动,得到抽运过程中板条激光介质的动态热畸变情况,为动态补偿激光介质热效应提供了可能。实验采用了N31磷酸盐激光玻璃作样品,得到了加热过程中激光玻璃内部的温度分布,误差约为3%,验证了该测量方法的可行性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

为了获得大功率高光束质量的激光输出,利用自制的5bar激光二极管阵列堆作为抽运源,抽运光经波导整形系统整形后入射至晶体,采用柱面镜混合腔结构,对部分端面抽运的混合腔Nd∶YVO4板条激光器进行了实验研究。在最高抽运功率134W时,得到了38W的连续激光输出,斜效率44%,测得的两个方向的M2因子为1.56和1.78。实验结果表明,该激光器具有极佳的热效应,能够在高功率运转时保持高光束质量的激光输出,输入-输出功率曲线没有出现平顶或弯曲的迹象,该激光器仍有提升潜力,本结果有助于进一步提升该激光器的性能,实现更高功率的高光束质量激光输出。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

激光器中激光介质采用板条状几何结构可以极大地降低它的热效应,但仍然需要进一步分析其影响,进而优化激光器效率。利用有限元分析方法分析了部分端面抽运的混合腔板条激光器中激光介质的热效应,计算的热透镜焦距与实测结果基本相符。分析了热效应对模式匹配的影响,分析结果对于优化激光器效率、改进谐振腔设计具有一定的参考价值。并在分析的基础上进行了混合腔实验,抽运功率为110 W时,获得连续输出激光功率41.5 W,光-光转换效率约38%,斜效率达58.8%,M2因子为非稳腔方向M2x=1.59,稳定腔方向M2y=1.55。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

报道了激光二极管泵浦的被动传导冷却的Q开关Nd:YAG zigzag 板条激光器,谐振腔采用平平腔和非稳腔。在20Hz运转时,得到脉宽均为10ns的150 mJ,光光效率19%的多模输出和100 mJ、13%光学效率的单模输出,并进行了相关的热效应测试,结果表明该激光器具有效率高、结构紧凑、光束质量好,在空间环境应用具有很好的发展潜力。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

文中报道了一台采用激光二极管部分边缘泵浦方式的高功率薄片激光器,晶体尺寸是1 mm×10 mm×60 mm。Cr4+:YAG被用来作为被动调Q晶体,在重复频率高于10kHz时,获得了脉宽10ns,平均功率70W,斜线效率为36\%的激光输出。通过控制泵浦光束直径的大小,我们在厚度方向得到了近似衍射极限的光束输出。整个激光器结构紧凑,大小为60 mm×174 mm×150 mm。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

现代制造业对双频激光干涉仪的最大可测量速度提出了越来越高的要求。最大可测量速度是双频激光干涉仪的一项重要指标,它主要受双频激光光源所输出的频差、干涉仪的光学结构以及电子带宽等因素的限制。本文从理论和实验两方面对干涉仪的最大可测量速度进行了研究,搭建了基于自由落体运动的实验装置。实验结果表明,实际最大可测量速度略低于其理论值。另外,文中还分析了上述三种因素对最大可测量速度的影响。实验装置和结果可供工业应用提供参考。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of multi-target tracking in realistic crowded conditions by introducing a novel dual-stage online tracking algorithm. The problem of data-association between tracks and detections, based on appearance, is often complicated by partial occlusion. In the first stage, we address the issue of occlusion with a novel method of robust data-association, that can be used to compute the appearance similarity between tracks and detections without the need for explicit knowledge of the occluded regions. In the second stage, broken tracks are linked based on motion and appearance, using an online-learned linking model. The online-learned motion-model for track linking uses the confident tracks from the first stage tracker as training examples. The new approach has been tested on the town centre dataset and has performance comparable with the present state-of-the-art

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel dual-stage algorithm for online multi-target tracking in realistic conditions. In the first stage, the problem of data association between tracklets and detections, given partial occlusion, is addressed using a novel occlusion robust appearance similarity method. This is used to robustly link tracklets with detections without requiring explicit knowledge of the occluded regions. In the second stage, tracklets are linked using a novel method of constraining the linking process that removes the need for ad-hoc tracklet linking rules. In this method, links between tracklets are permitted based on their agreement with optical flow evidence. Tests of this new tracking system have been performed using several public datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence. This unique property makes Co-Driver ideal for sequential lineage tracing studies aimed at unraveling the relationships between cellular precursors and mature cell types. Co-InCre was designed for highly efficient intersectional conditional transgenesis. It relies on highly active trans-splicing inteins and promoters with simultaneous transcriptional activity to reconstitute Cre recombinase from two inactive precursor fragments. By generating native Cre, Co-InCre attains recombination rates that exceed all other binary SSR systems evaluated in this study. Both Co-Driver and Co-InCre significantly extend the utility of existing Cre-responsive alleles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.