Sonochemical synthesis of graphene oxide supported Pt–Pd alloy nanocrystals as efficient electrocatalysts for methanol oxidation
Contribuinte(s) |
Universidad de Alicante. Departamento de Química Física Universidad de Alicante. Instituto Universitario de Electroquímica Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES) |
---|---|
Data(s) |
26/03/2015
26/03/2015
01/11/2014
|
Resumo |
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets. We acknowledge financial support from the Australian Research Council (ARC). The financial supports of the Spanish Ministry of Economy and Competitiveness through the Spanish–Indian bilateral project PRI-PIBIN-2011-0816, and SERB (SR/FT/CS-127/2011), DST, New Delhi, India, are also gratefully acknowledged. |
Identificador |
Journal of Solid State Electrochemistry. 2014, 18(11): 3163-3171. doi:10.1007/s10008-014-2562-4 1432-8488 (Print) 1433-0768 (Online) http://hdl.handle.net/10045/46085 10.1007/s10008-014-2562-4 |
Idioma(s) |
eng |
Publicador |
Springer Berlin Heidelberg |
Relação |
http://dx.doi.org/10.1007/s10008-014-2562-4 |
Direitos |
The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-014-2562-4 info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Platinum–palladium alloy #Nanoparticles #Graphene oxide #Electrocatalyst #Sonochemistry #Química Física |
Tipo |
info:eu-repo/semantics/article |