963 resultados para normally dispersive solid bulk medium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of molecular dynamics investigations into neutral impurity diffusing within an amorphous solid as a function of the size of the diffusant and density of the host amorphous matrix. We find that self diffusivity exhibits an anomalous maximum as a function of the size of the impurity species. An analysis of properties of the impurity atom with maximum diffusivity shows that it is associated with lower mean square force, reduced backscattering of velocity autocorrelation function, near-exponential decay of the intermediate scattering function (as compared to stretched-exponential decay for other sizes of the impurity species) and lower activation energy. These results demonstrate the existence of size-dependent diffusivity maximum in disordered solids. Further, we show that the diffusivity maximum is observed at lower impurity diameters with increase in density. This is explained in terms of the Levitation parameter and the void structure of the amorphous solid. We demonstrate that these results imply contrasting dependence of self diffusivity (D) on the density of the amorphous matrix, p. D increases with p for small sizes of the impurity but shows an increase followed by a decrease for intermediate sizes of the impurity atom. For large sizes of the impurity atom, D decreases with increase in p. These contrasting dependence arises naturally from the existence of Levitation Effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nine tie-lines between Fe-Ni alloys and FeTiO3-NiTiO3 solid solutions were determined at 1273 K. Samples were equilibrated in evacuated quartz ampoules for periods up to 10 days. Compositions of the alloy and oxide phases at equilibrium were determined by energy-dispersive x-ray spectroscopy. X-ray powder diffraction was used to confirm the results. Attainment of equilibrium was verified by the conventional tie-line rotation technique and by thermodynamic analysis of the results. The tie-lines are skewed toward the FeTiO3 corner. From the tie-line data and activities in the Fe-Ni alloy phase available in the literature, activities of FeTiO3 and NiTiO3 in the ilmenite solid solution were derived using the modified Gibbs-Duhem technique of Jacob and Jeffes [K.T. Jacob and J.H.E. Jeffes, An Improved Method for Calculating Activities from Distribution Equilibria, High Temp. High Press., 1972, 4, p 177-182]. The components of the oxide solid solution exhibit moderate positive deviations from Raoult's law. Within experimental error, excess Gibbs energy of mixing for the FeTiO3-NiTiO3 solid solution at 1273 K is a symmetric function of composition and can be represented as: Delta G(E) = 8590 (+/- 200) X-FeTiO3 X-NiTiO3 J/mol Full spectrum of tie-lines and oxygen potentials for the three-phase equilibrium involving Fe-Ni alloys, FeTiO3-NiTiO3 solid solutions, and TiO2 at 1273 K were computed using results obtained in this study and data available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H-2 at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pressure on the electrical resistivity of amorphous n-type (GeSe3.5)100�xBix been studied in a Bridgeman anvil system up to a pressure of 90 kbar down to liquid nitrogen temperature. A continuous amorphous semiconductor to metal-like solid transition in the undoped GeSe3.5 is observed at room temperature. Incorporation of Bi in the GeSe3.5 network is found to significantly disturb the behaviour of the resistivity with pressure. With increasing Bi concentration a much broader variation in resistivity with pressure is observed. The temperature dependence of the resistivity and activation energy at different pressures is also measured and they are found to be composition dependent. Results are discussed in the light of the Phillips Model of ordered clusters in chalcogenide semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An irreversible pressure induced semiconductor-to-metal transition in bulk Ge20Te80 glass is observed at about 5 GPa pressure. The high pressure phase has a face centered cubic structure with a lattice constant 6.42 A° as deduced by X-ray diffraction studies on the pressure quenched samples. The temperature and pressure dependence of the electrical resistivity confirms the observed transition to be a semiconductor-to-metal transition. The temperature dependence of thermo electric power is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a more efficient in vitro regeneration system for somatic embryos (SEs) of avocado (Persea americana) would facilitate the development of new superior cultivars for this valuable horticultural crop. In this study, we report a new and efficient method for maintenance and regeneration of avocado SEs. Avocado SEs of four cultivars remained healthy and viable in vitro for 11 months on a medium used for mango somatic embryogenesis, compared with 3-4 months on Murashige and Skoog medium. Various supplements and media modifications were investigated to improve the low conversion rate of regenerated plants from avocado SEs reported previously. The one-step system for regeneration of white-opaque somatic embryos (WOSEs) used solid medium only over a period of 12-14 weeks (sub-culturing every 6 weeks). Addition of praline and glutamine improved the total regeneration from 0 to 17.5% and 10.5%, and plant/shoot recovery from 0 to 12.5% and 5%, respectively. A two-step culture system involving the transfer of WOSEs of cultivar 'Reed' after 6 weeks on solid to liquid medium for 12-15 days as an intermediate step, followed by subculturing again onto solid medium for 6 weeks improved total regeneration to 29% and plant/shoot recovery to 18.3 from 0% when regenerated by subculturing on solid medium only. Supplementation with proline in the solid as well as liquid medium in the two-step culture system at 0.4 g/L increased total regeneration to 35% and plant/shoot recovery to 20%. We were able to achieve highest regeneration using glutamine at 1 g/L in the two-step culture system in terms of both total regeneration (58.3%, including 43.3% bipolar regeneration) and plant/shoot recovery (36.7%) rates, which were significantly higher than in any other treatment investigated. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.