991 resultados para nonlinear correlation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers [Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013)1751-811310.1088/1751-8113/46/3/035501; Nath, Phys. Rev. E 88, 013010 (2013)PLEEE81539-375510.1103/PhysRevE.88.013010] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a "cold" accretion flow at 3000 K is too "hot" in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the statistics of simulated bit-error rates in optical transmission systems with strong patterning effects and have found strong correlation between the probability of marks in a pseudorandom pattern and the error-free transmission distance. We discuss how a reduced density of marks can be achieved by preencoding optical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a theoretical explanation of the results on the intensity distributions and correlation functions obtained from a random-beam speckle field in nonlinear bulk waveguides reported in the recent publication by Bromberg et al. [Nat. Photonics 4, 721 (2010) ].. We study both the focusing and defocusing cases and in the limit of small speckle size (short-correlated disordered beam) provide analytical asymptotes for the intensity probability distributions at the output facet. Additionally we provide a simple relation between the speckle sizes at the input and output of a focusing nonlinear waveguide. The results are of practical significance for nonlinear Hanbury Brown and Twiss interferometry in both optical waveguides and Bose-Einstein condensates. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrability of the nonlinear Schräodinger equation (NLSE) by the inverse scattering transform shown in a seminal work [1] gave an interesting opportunity to treat the corresponding nonlinear channel similar to a linear one by using the nonlinear Fourier transform. Integrability of the NLSE is in the background of the old idea of eigenvalue communications [2] that was resurrected in recent works [3{7]. In [6, 7] the new method for the coherent optical transmission employing the continuous nonlinear spectral data | nonlinear inverse synthesis was introduced. It assumes the modulation and detection of data using directly the continuous part of nonlinear spectrum associated with an integrable transmission channel (the NLSE in the case considered). Although such a transmission method is inherently free from nonlinear impairments, the noisy signal corruptions, arising due to the ampli¯er spontaneous emission, inevitably degrade the optical system performance. We study properties of the noise-corrupted channel model in the nonlinear spectral domain attributed to NLSE. We derive the general stochastic equations governing the signal evolution inside the nonlinear spectral domain and elucidate the properties of the emerging nonlinear spectral noise using well-established methods of perturbation theory based on inverse scattering transform [8]. It is shown that in the presence of small noise the communication channel in the nonlinear domain is the additive Gaussian channel with memory and signal-dependent correlation matrix. We demonstrate that the effective spectral noise acquires colouring", its autocorrelation function becomes slow decaying and non-diagonal as a function of \frequencies", and the noise loses its circular symmetry, becoming elliptically polarized. Then we derive a low bound for the spectral effiency for such a channel. Our main result is that by using the nonlinear spectral techniques one can significantly increase the achievable spectral effiency compared to the currently available methods [9]. REFERENCES 1. Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, Vol. 34, 62{69, 1972. 2. Hasegawa, A. and T. Nyu, J. Lightwave Technol., Vol. 11, 395{399, 1993. 3. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4312{4328, 2014. 4. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4329{4345 2014. 5. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4346{4369, 2014. 6. Prilepsky, J. E., S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Phys. Rev. Lett., Vol. 113, 013901, 2014. 7. Le, S. T., J. E. Prilepsky, and S. K. Turitsyn, Opt. Express, Vol. 22, 26720{26741, 2014. 8. Kaup, D. J. and A. C. Newell, Proc. R. Soc. Lond. A, Vol. 361, 413{446, 1978. 9. Essiambre, R.-J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol., Vol. 28, 662{701, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation proposed a new approach to seizure detection in intracranial EEG recordings using nonlinear decision functions. It implemented well-established features that were designed to deal with complex signals such as brain recordings, and proposed a 2-D domain of analysis. Since the features considered assume both the time and frequency domains, the analysis was carried out both temporally and as a function of different frequency ranges in order to ascertain those measures that were most suitable for seizure detection. In retrospect, this study established a generalized approach to seizure detection that works across several features and across patients. ^ Clinical experiments involved 8 patients with intractable seizures that were evaluated for potential surgical interventions. A total of 35 iEEG data files collected were used in a training phase to ascertain the reliability of the formulated features. The remaining 69 iEEG data files were then used in the testing phase. ^ The testing phase revealed that the correlation sum is the feature that performed best across all patients with a sensitivity of 92% and an accuracy of 99%. The second best feature was the gamma power with a sensitivity of 92% and an accuracy of 96%. In the frequency domain, all of the 5 other spectral bands considered, revealed mixed results in terms of low sensitivity in some frequency bands and low accuracy in other frequency bands, which is expected given that the dominant frequencies in iEEG are those of the gamma band. In the time domain, other features which included mobility, complexity, and activity, all performed very well with an average a sensitivity of 80.3% and an accuracy of 95%. ^ The computational requirement needed for these nonlinear decision functions to be generated in the training phase was extremely long. It was determined that when the duration dimension was rescaled, the results improved and the convergence rates of the nonlinear decision functions were reduced dramatically by more than a 100 fold. Through this rescaling, the sensitivity of the correlation sum improved to 100% and the sensitivity of the gamma power to 97%, which meant that there were even less false negatives and false positives detected. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has demonstrated the strong qualitative differences between the dynamics near a glass transition driven by short-ranged repulsion and one governed by short-ranged attraction. Here, we study in detail the behavior of non-linear, higher-order correlation functions that measure the growth of length scales associated with dynamical heterogeneity in both types of systems. We find that this measure is qualitatively different in the repulsive and attractive cases with regards to the wave vector dependence as well as the time dependence of the standard non-linear four-point dynamical susceptibility. We discuss the implications of these results for the general understanding of dynamical heterogeneity in glass-forming liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this contribution, a system identification procedure of a two-input Wiener model suitable for the analysis of the disturbance behavior of integrated nonlinear circuits is presented. The identified block model is comprised of two linear dynamic and one static nonlinear block, which are determined using an parameterized approach. In order to characterize the linear blocks, an correlation analysis using a white noise input in combination with a model reduction scheme is adopted. After having characterized the linear blocks, from the output spectrum under single tone excitation at each input a linear set of equations will be set up, whose solution gives the coefficients of the nonlinear block. By this data based black box approach, the distortion behavior of a nonlinear circuit under the influence of an interfering signal at an arbitrary input port can be determined. Such an interfering signal can be, for example, an electromagnetic interference signal which conductively couples into the port of consideration. © 2011 Author(s).