936 resultados para high-order upwind schemes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
Resumo:
We present a numerical solution for the steady 2D Navier-Stokes equations using a fourth order compact-type method. The geometry of the problem is a constricted symmetric channel, where the boundary can be varied, via a parameter, from a smooth constriction to one possessing a very sharp but smooth corner allowing us to analyse the behaviour of the errors when the solution is smooth or near singular. The set of non-linear equations is solved by the Newton method. Results have been obtained for Reynolds number up to 500. Estimates of the errors incurred have shown that the results are accurate and better than those of the corresponding second order method. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ABSTRACT: One way to produce high order in a block copolymer thin film is by solution casting a thin film and slowly evaporating the solvent in a sealed vessel. Such a solvent-annealing process is a versatile method to produce a highly ordered thin film of a block copolymer. However, the ordered structure of the film degrades over time when stored under ambient conditions. Remarkably, this aging process occurs in mesoscale thin films of polystyrene-polyisoprene triblock copolymer where the monolayer of vitrified 15 nm diameter polystyrene cylinders sink in a 20 nm thick film at 22 °C. The transformation is studied by atomic force microscopy (AFM). We describe the phenomena, characterize the aging process, and propose a semiquantitative model to explain the observations. The residual solvent effects are important but not the primary driving force for the aging process. The study may lead to effective avenue to improve order and make the morphology robust and possibly the solvent-annealing process more effective.
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
The upgrade of the CERN accelerator complex has been planned in order to further increase the LHC performances in exploring new physics frontiers. One of the main limitations to the upgrade is represented by the collective instabilities. These are intensity dependent phenomena triggered by electromagnetic fields excited by the interaction of the beam with its surrounding. These fields are represented via wake fields in time domain or impedances in frequency domain. Impedances are usually studied assuming ultrarelativistic bunches while we mainly explored low and medium energy regimes in the LHC injector chain. In a non-ultrarelativistic framework we carried out a complete study of the impedance structure of the PSB which accelerates proton bunches up to 1.4 GeV. We measured the imaginary part of the impedance which creates betatron tune shift. We introduced a parabolic bunch model which together with dedicated measurements allowed us to point to the resistive wall impedance as the source of one of the main PSB instability. These results are particularly useful for the design of efficient transverse instability dampers. We developed a macroparticle code to study the effect of the space charge on intensity dependent instabilities. Carrying out the analysis of the bunch modes we proved that the damping effects caused by the space charge, which has been modelled with semi-analytical method and using symplectic high order schemes, can increase the bunch intensity threshold. Numerical libraries have been also developed in order to study, via numerical simulations of the bunches, the impedance of the whole CERN accelerator complex. On a different note, the experiment CNGS at CERN, requires high-intensity beams. We calculated the interpolating Hamiltonian of the beam for highly non-linear lattices. These calculations provide the ground for theoretical and numerical studies aiming to improve the CNGS beam extraction from the PS to the SPS.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Plasmabasierte Röntgenlaser sind aufgrund ihrer kurzen Wellenlänge und schma-rnlen spektralen Bandbreite attraktive Diagnose-Instrumente in einer Vielzahl potentieller Anwendungen, beispielsweise in den Bereichen Spektroskopie, Mikroskopie und EUV-Lithografie. Dennoch sind Röntgenlaser zum heutigen Stand noch nicht sehr weit verbreitet, was vorwiegend auf eine zu geringe Pulsenergie und für manche Anwendungen nicht hinreichende Strahlqualität zurückzuführen ist. In diesem Zusammenhang wurden in den letzten Jahren bedeutende Fortschritte erzielt. Die gleichzeitige Weiterentwicklung von Pumplasersystemen und Pumpmechanismen ermöglichte es, kompakte Röntgenlaserquellen mit bis zu 100 Hz zu betreiben. Um gleichzeitig höhere Pulsenergien, höhere Strahlqualität und volle räumliche Kohärenz zu erhalten, wurden intensive Studien theoretischer und experimenteller Natur durchgeführt. In diesem Kontext wurde in der vorliegenden Arbeit ein experimenteller Aufbau zur Kombination von zwei Röntgenlaser-Targets entwickelt, die sogenannte Butterfly-Konfiguration. Der erste Röntgenlaser wird dabei als sogenannter Seed für das zweite, als Verstärker dienende Röntgenlasermedium verwendet (injection-seeding). Aufrndiese Weise werden störende Effekte vermieden, welche beim Entstehungsprozessrndes Röntgenlasers durch die Verstärkung von spontaner Emission zustande kom-rnmen. Unter Verwendung des ebenfalls an der GSI entwickelten Double-Pulse Gra-rnzing Incidence Pumpschemas ermöglicht das hier vorgestellte Konzept, erstmaligrnbeide Röntgenlasertargets effizient und inklusive Wanderwellenanregung zu pum-rnpen.rnBei einer ersten experimentellen Umsetzung gelang die Erzeugung verstärkter Silber-Röntgenlaserpulse von 1 µJ bei 13.9 nm Wellenlänge. Anhand der gewonnenen Daten erfolgte neben dem Nachweis der Verstärkung die Bestimmung der Lebensdauer der Besetzungsinversion zu 3 ps. In einem Nachfolgeexperiment wurden die Eigenschaften eines Molybdän-Röntgenlaserplasmas näher untersucht. Neben dem bisher an der GSI angewandten Pumpschema kam in dieser Strahlzeit noch eine weitere Technik zum Einsatz, welche auf einem zusätzlichen Pumppuls basierte. In beiden Schemata gelang neben dem Nachweis der Verstärkung die zeitliche und räumliche Charakterisierung des Verstärkermediums. Röntgenlaserpulse mit bis zu 240 nJ bei einer Wellenlänge von 18.9 nm wurden nachgewiesen. Die erreichte Brillanz der verstärkten Pulse lag ca. zwei Größenordnungen über der des ursprünglichen Seeds und mehr als eine Größenordnung über der Brillanz eines Röntgenlasers, dessen Erzeugung auf der Verwendung eines einzelnen Targets basierte. Das in dieser Arbeitrnentwickelte und experimentell verifizierte Konzept birgt somit das Potential, extrem brillante plasmabasierte Röntgenlaser mit vollständiger räumlicher und zeitlicher Kohärenz zu erzeugen.rnDie in dieser Arbeit diskutierten Ergebnisse sind ein wesentlicher Beitrag zu der Entwicklung eines Röntgenlasers, der bei spektroskopischen Untersuchungen von hochgeladenen Schwerionen eingesetzt werden soll. Diese Experimente sind amrnExperimentierspeicherring der GSI und zukünftig auch am High-Energy StoragernRing der FAIR-Anlage vorgesehen.rn
Resumo:
Die causa finalis der vorliegenden Arbeit ist das Verständnis des Phasendiagramms von Wasserstoff bei ultrahohen Drücken, welche von nichtleitendem H2 bis hin zu metallischem H reichen. Da die Voraussetzungen für ultrahohen Druck im Labor schwer zu schaffen sind, bilden Computersimulationen ein wichtiges alternatives Untersuchungsinstrument. Allerdings sind solche Berechnungen eine große Herausforderung. Eines der größten Probleme ist die genaue Auswertung des Born-Oppenheimer Potentials, welches sowohl für die nichtleitende als auch für die metallische Phase geeignet sein muss. Außerdem muss es die starken Korrelationen berücksichtigen, die durch die kovalenten H2 Bindungen und die eventuellen Phasenübergänge hervorgerufen werden. Auf dieses Problem haben unsere Anstrengungen abgezielt. Im Kontext von Variationellem Monte Carlo (VMC) ist die Shadow Wave Function (SWF) eine sehr vielversprechende Option. Aufgrund ihrer Flexibilität sowohl lokalisierte als auch delokalisierte Systeme zu beschreiben sowie ihrer Fähigkeit Korrelationen hoher Ordnung zu berücksichtigen, ist sie ein idealer Kandidat für unsere Zwecke. Unglücklicherweise bringt ihre Formulierung ein Vorzeichenproblem mit sich, was die Anwendbarkeit limitiert. Nichtsdestotrotz ist es möglich diese Schwierigkeit zu umgehen indem man die Knotenstruktur a priori festlegt. Durch diesen Formalismus waren wir in der Lage die Beschreibung der Elektronenstruktur von Wasserstoff signifikant zu verbessern, was eine sehr vielversprechende Perspektive bietet. Während dieser Forschung haben wir also die Natur des Vorzeichenproblems untersucht, das sich auf die SWF auswirkt, und dabei ein tieferes Verständnis seines Ursprungs erlangt. Die vorliegende Arbeit ist in vier Kapitel unterteilt. Das erste Kapitel führt VMC und die SWF mit besonderer Ausrichtung auf fermionische Systeme ein. Kapitel 2 skizziert die Literatur über das Phasendiagramm von Wasserstoff bei ultrahohem Druck. Das dritte Kapitel präsentiert die Implementierungen unseres VMC Programms und die erhaltenen Ergebnisse. Zum Abschluss fasst Kapitel 4 unsere Bestrebungen zur Lösung des zur SWF zugehörigen Vorzeichenproblems zusammen.
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Resumo:
We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.