Band-edge states of the zero(th)-order gap in quasi-periodic photonic superlattices


Autoria(s): Bruno-Alfonso, A.; Reyes-Gomez, E.; Cavalcanti, S. B.; Oliveira, L. E.; Tomanek, P; Senderakova, D; Hrabovsky, M
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2008

Resumo

The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the <epsilon > = 0 and <mu > = 0 conditions.

Formato

5

Identificador

http://dx.doi.org/10.1117/12.818014

Photonics, Devices, and Systems Iv. Bellingham: Spie-int Soc Optical Engineering, v. 7138, p. 5, 2008.

0277-786X

http://hdl.handle.net/11449/39460

10.1117/12.818014

WOS:000279530600045

Idioma(s)

eng

Publicador

Spie - Int Soc Optical Engineering

Relação

Photonics, Devices, and Systems Iv

Direitos

closedAccess

Palavras-Chave #Fibonacci superlattice #zero(th)-order gap #photonic crystals
Tipo

info:eu-repo/semantics/conferenceObject