798 resultados para edible mushroom
Resumo:
We examined physiological stress responses in the edible crab, Cancer pagurus, subjected to the commercial fishery practice of manual de-clawing. We measured haemolymph glucose and lactate, plus muscular glycogen and glycogen mobilisation, in three experiments where the crabs had one claw removed. In the first, crabs showed physiological stress responses when 'de-clawed' as compared to 'handled only over the short term of 1-10 min. In the second, de-clawing and the presence of a conspecific both increased the physiological stress responses over the longer term of 24 h. In the third, de-clawing was shown to be more stressful than 'induced autotomy' of claws. Further, the former practice caused larger wounds to the body and significantly higher mortality than the latter. Since the fishery practice is to remove both claws, the stress response observed and mortality data reported are conservative.
Resumo:
Feeding ability and motivation were assessed in the edible crab, Cancer pagurus, to investigate how the fishery practice of de-clawing may affect live crabs returned to the sea. Crabs were either induced to autotomise one claw, or were only handled, before they were offered food. Initially, autotomised and handled crabs were offered mussels, Mytilis edulis, a large part of their natural diet. After 3 days, both autotomised and handled crabs were then offered fish, a more readily handled food source. Autotomy induced crabs consumed significantly fewer mussels and less mussel mass, but ate significantly more mass of fish. This indicates that the effect of autotomy was a reduction of ability to feed on mussels rather than a general reduction of feeding motivation. The discontinuation of claw removal needs to be considered, both for the sustainability of the fishery and animal welfare concerns. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.
Resumo:
Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.
Resumo:
The objective of this work was to study the textural properties of edible films made from sour (acid) whey for food wrapping application. Acid whey is often regarded as a waste product, obtained as a watery effluent in the manufacturing of cottage cheese. In general, owing to its high nutritional value, whey has gained importance as an additive in food manufacturing processes and in health drink formulations. In this work, fresh sour whey was used to make edible films. The proteins in the whey were concentrated by ultrafiltration to reduce the water content. Only natural ingredients such as acid whey and agar were used to form the film under controlled heating (650 W) in a microwave oven. The structural and surface characteristics of the films were tested by a texture analyser and scanning electron micrographs.
Resumo:
Composers of digital music today have a bewildering variety of sound-processing tools and techniques at their disposal. At their best, these tools allow composers to hone a sound to perfection. However, they can also lead us into a routine which bypasses avenues of experimentation, simply because the known tools work so well and their sonic output is so attractive. An alternative strategy is oracular sound processing. An oracular sound processor creates a derived version of its input whose characteristics could not have been fully predicted, while affording the user little or no parametric control over the process.
Resumo:
The effect of coating Arbutus unedo fresh fruit with alginate-based edible coatings enriched with the essential oils compounds (EOC) eugenol (Eug) and citral (Cit) was studied. The minimum inhibitory concentrations (MIC) against the main postharvest pathogens were determined for Eug and Cit giving values of 0.10 and 0.15 (w/v), respectively. Twelve formulations of edible coatings were used: sodium alginate (AL) was tested at 1 and 2% (w/v) with incorporation of Eug and Cit at MIC and double MIC or their combination at MIC. Arbutus berries were dipped in those solutions for 2 min, and then stored at 0.5 degrees C. Control consisted of uncoated fruit. On days 0, 14 and 28, samples were taken to perform physicochemical and biochemical analysis [color CIE (L*, h degrees), firmness, soluble solids content (SSC), weight Loss, trolox equivalent antioxidant capacity (TEAC), microbial growth and taste panels]. Results showed that edible coatings of 1% AL were the best to maintain most quality attributes of the commodity through storage at 0.5 degrees C. The incorporation of Cit and Eug into the alginate edible coatings improved the coatings in most cases, AL 1% + Eug 0.20% and AL 1% + Cit 0.15% + Eug 0.10% being those that better preserved sensory and nutritional attributes and reduced microbial spoilage. Thus, these coatings may be useful for improving postharvest quality and storage life of fresh arbutus fruit. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Dissertação de mestrado, Hortofruticultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação para a obtenção de grau de doutor em Ciências da Engenharia e Tecnologia
Resumo:
Mushroom poisoning is a regular complaint for consultation in emergency facilities. These situations are usually benign and symptomatic treatment is sufficient. However, severe damage can occur, potentially life-threatening. We review the various syndromes associated with the toxins involved, their management and the major signs that are suggestive of serious injury and requiring hospitalization.
Resumo:
Green mould is a serious disease of commercially grown mushrooms, the causal agent being attributed to the filamentous soil fungus Triclzodenna aggressivum f. aggressivu11l and T. aggressivum f. ellropaellm. Found worldwide, and capable of devastating crops, this disease has caused millions of dollars in lost revenue within the mushroom industry. One mechanism used by TricllOdenlla spp. in the antagonism of other fungi, is the secretion of lytic enzymes such as chitinases, which actively degrade a host's cell wall. Therefore, the intent of this study was to examine the production of chitinase enzymes during the host-parasite interaction of Agaricus bisporus (commercial mushroom) and Triclzodemza aggressivum, focusing specifically on chitinase involvement in the differential resistance of white, off-white, and brown commercial mushroom strains. Chitinases isolated from cultures of A. bisporus and T. aggressivu11l grown together and separately, were identified following native PAGE, and analysis of fluorescence based on specific enzymatic cleavage of 4-methylumbelliferyl glucoside substrates. Results indicate that the interaction between T. aggressivulll and A. bisporus involves a complex enzyme battle. It was determined that T. aggressivum produces a number of chitinases that appear to correlate to those isolated in previous studies using biocontrol strains of T. Izarziallilm. A 122 kDa N-acetylglucosaminidase of T. aggressivu11l revealed the highest and most variable activity, and is therefore believed to be an important predictor of antifungal activity. Furthermore, results indicate that brown strain resistance of mushrooms may be related to high levels of a 96 kDa N-acetylglucosaminidase, which showed elevated activity in both solitary and dual cultures with T. aggressivum. Overall, each host-parasite combination produced unique enzyme profiles, with the majority of the differences seen between day 0 and day 6 for the extracellular chitinases. Therefore, it was concluded that the antagonistic behaviour of T. aggressivli1ll does not involve a typical response, always producing the same types and levels of enzymes, but that mycoparasitism, specifically in the form of chitinase production, may be induced and regulated based on the host presented.
Resumo:
A total of 251 bacterial isolates were isolated from blotched mushroom samples obtained from various mushroom farms in Canada. Out of 251 stored isolates, 170 isolates were tested for pathogenicity on Agaricus bisporus through mushroom rapid pitting test with three distinct pathotypes observed: dark brown, brovm and yellow/yellow-brown blotch. Phenotypic analysis of 83 isolates showed two distinct proteinase K resistant peptide profiles. Profile group A isolates exhibited peptides with masses of 45, 18, 16 and 14 kDa and fiirther biochemical tests identified them as Pseudomonasfluorescens III and V. Profile group B isolates lacked the 16-kDa peptide and the blotch causing bacterial isolates of this group was identified as Serratia liquefaciens and Cedecea davisae. Comparative genetic analysis using Amplified Fragment Length Polymorphism (AFLP) on 50 Pseudomonas sp. isolates (Group A) showed that various blotch symptoms were caused by isolates distributed throughout the Pseudomonas sp. clusters with the exception of the Pseudomonas tolaasii group and one non-pathogenic Pseudomonas fluorescens cluster. These results show that seven distinct Pseudomonas sp. genotypes (genetic clusters) have the ability to cause various symptoms of blotch and that AFLP can discriminate blotch causing from non-blotch causing Pseudomonasfluorescens. Therefore, a complex of diverse bacterial organisms causes bacterial blotch disease
Resumo:
An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.