883 resultados para discourse againts the novel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lastyears declined the discovery of compounds to use in industrial and naturaldiversity has been the best supplier for novel genes, enzymes and compounds inhigh demand by the biotechnology industry. We know immense diversity of microorganisms,yet most remains unexplored. For these reason we use the metagenômica approach toinvestigate the potential of uncultured microorganisms. With this purpose weused the metagenomic library of from Eucalyptus spp. arboretum (EAA), wedid screening to found positive clone and them was submitted to the process of shotgun,the data obtained was submitted a bioinformatics analyses. Our results showsthe hypothesis of high unexplored microbial diversity of soil are able to foundnovel genes and metagenomic approach is and allowed to isolate novel genes and insilico analyses are essential part to identify a novel Inorganicpyrophosphatase (PPase) prediction indicated the novel gene operate as H+ pumps. Thissuggests that a special feature, our work in situ will be cloning thegene expression vector for subsequent kinetic characterization and crystallization.
Resumo:
This article discusses the project of the Information Society and the discourses that undergo it, as part of a political and ideological conception universalized by those countries that created and dominate computer technology, which is in turn is aligned with the Post-Fordist industrial capitalist order and its emphasis on economic accumulation and consumerism. We explain how information technology creates routines and legitimate social orders, taking for analyzes the case of the Clinton-Gore policy in the United States, when the discourse of the computer society was associated with the development and social welfare. This association is revealed in the speech made by Clinton in the city of Knoxville in year 1996. There we see the beginnings of the concern about the Digital Divide as a new form of "social disease" that prevents the passage to a better world, focused on productivity, accumulation and consumption in information-dense societies. This generates a clash between the industrial-graph-centric world and the oral-pre-industrial communities, as a result of attempting to transplant the institutional forms of the developed West. We explain the pillars of the new computerized order, and how they replaced previous epic narratives creating techno-deterministic or techno-phobic discourses in prejudice of more critical approaches. We identify the effects such deterministic discourses that connote the association between the Information Society, welfare and development, questioning the urgency of deploying this system at global level without profound critical discussion, clear goals focused on the benefit of the human beings, and the open participation of the users of the system.
Resumo:
The organometallic compound [Pd(C-bzan)(SCN)(dppp)] {bzan = N-benzylideneaniline, dppp = 1,3-bis(diphenylphosphino)propane} was synthesized and characterized by elemental analyses, infrared and H-1 and P-31(H-1) NMR spectroscopies. The crystal and molecular structures of the title complex were determined by single-crystal X-ray diffraction techniques. In vitro antimycobacterial evaluation demonstrated that the compound [Pd(C-bzan)(SCN)(dppp)] displayed a MIC of 5.15 mu M, which is superior than those values found for some commonly used anti-TB drugs and other Pd(II) complexes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.
Resumo:
In the last decade considerable attention has been devoted to the rewarding use of Green Chemistry in various synthetic processes and applications. Green Chemistry is of special interest in the synthesis of expensive pharmaceutical products, where suitable adoption of “green” reagents and conditions is highly desirable. Our project especially focused in a search for new green radical processes which might also find useful applications in the industry. In particular, we have explored the possible adoption of green solvents in radical Thiol-Ene and Thiol-Yne coupling reactions, which to date have been normally performed in “ordinary” organic solvents such as benzene and toluene, with the primary aim of applying those coupling reactions to the construction of biological substrates. We have additionally tuned adequate reaction conditions which might enable achievement of highly functionalised materials and/or complex bioconjugation via homo/heterosequence. Furthermore, we have performed suitable theoretical studies to gain useful chemical information concerning mechanistic implications of the use of green solvents in the radical Thiol-Yne coupling reactions.
Resumo:
Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Resumo:
Due to multiple immune evasion mechanisms of cancer cells, novel therapy approaches are required to overcome the limitations of existing immunotherapies. Bispecific antibodies are potent anti-cancer drugs, which redirect effector T cells for specific tumor cell lysis, thus enabling the patient’s immune system to fight cancer cells. The antibody format used in this proof of concept study–bispecific ideal monoclonal antibodies termed BiMAB–is a tailor-made recombinant protein, which consists of two fused scFv antibodies recognizing different antigens. Both are arranged in tandem on a single peptide chain and the individual variable binding domains are separated by special non-immunogenic linkers. The format is comprised of a scFv targeting CLDN18.2–a gastric cancer tumor associated antigen (TAA) –while the second specificity binds the CD3 epsilon (CD3ε) subunit of the T cell receptor (TCR) on T cells. For the first time, we compared in our IMAB362-based BiMAB setting, four different anti-CD3-scFvs, respectively derived from the mAbs TR66, CLB-T3, as well as the humanized and the murine variant of UCHT1. In addition, we investigated the impact of an N- versus a C-terminal location of the IMAB362-derived scFv and the anti-CD3-scFvs. Thus, nine CLDN18.2 specific BiMAB proteins were generated, of which all showed a remarkably high cytotoxicity towards CLDN18.2-positive tumor cells. Because of its promising effectiveness, 1BiMAB emerged as the BiMAB prototype. The selectivity of 1BiMAB for its TAA and CD3ε, with affinities in the nanomolar range, has been confirmed by in vitro assays. Its dual binding depends on the design of an N-terminally positioned IMAB362 scFv and the consecutive C-terminally positioned TR66 scFv. 1BiMAB provoked a concentration and target cell dependent T cell activation, proliferation, and upregulation of the cytolytic protein Granzyme B, as well as the consequent elimination of target cells. Our results demonstrate that 1BiMAB is able to activate T cells independent of elements that are usually involved in the T cell recognition program, like antigen presentation, MHC restriction, and co-stimulatory effector molecules. In the first in vivo studies using a subcutaneous xenogeneic tumor mouse model in immune incompetent NSG mice, we could prove a significant therapeutic effect of 1BiMAB with partial or complete tumor elimination. The initial in vitro RIBOMAB experiments correspondingly showed encouraging results. The electroporation of 1BiMAB IVT-RNA into target or effector cells was feasible, while the functionality of translated 1BiMAB was proven by induced T cell activation and target cell lysis. Accordingly, we could show that the in vitro RIBOMAB approach was applicable for all nine BiMABs, which proves the RIBOMAB concept. Thus, the CLDN18.2-BiMAB strategy offers great potential for the treatment of cancer. In the future, administered either as protein or as IVT-RNA, the BiMAB format will contribute towards finding solutions to raise and sustain tumor-specific cellular responses elicited by engaged and activated endogenous T cells. This will potentially enable us to overcome immune evasion mechanisms of tumor cells, consequently supporting current solid gastric cancer therapies.
Resumo:
In mice, interleukin-18 (IL-18) regulates Th1- or Th2-type immune responses depending on the cytokine environment and effector cells involved, and the ST2-ligand, IL-33, primarily promotes an allergic phenotype. Human basophils, major players in allergic inflammation, constitutively express IL-18 receptors, while ST2 surface expression is inducible by IL-3. Unexpectedly, freshly isolated basophils are strongly activated by IL-33, but, in contrast to mouse basophils, do not respond to IL-18. IL-33 promotes IL-4, IL-13 and IL-8 secretion in synergy with IL-3 and/or FcepsilonRI-activation, and enhances FcepsilonRI-induced mediator release. These effects are similar to that of IL-3, but the signaling pathways engaged are distinct because IL-33 strongly activates NF-kappaB and shows a preference for p38 MAP-kinase, while IL-3 acts through Jak/Stat and preferentially activates ERK. Eosinophils are the only other leukocyte-type directly activated by IL-33, as evidenced by screening of p38-activation in peripheral blood cells. Only upon CD3/CD28-ligation, IL-33 weakly enhances Th2 cytokine expression by in vivo polarized Th2 cells. This study on primary human cells demonstrates that basophils and eosinophils are the only direct target leukocytes for IL-33, suggesting that IL-33 promotes allergic inflammation and Th2 polarization mainly by the selective activation of these specialized cells of the innate immune system.
Resumo:
The article discusses the function of an accompanying discourse in relation to the genesis of human practical action. On the one side, theory cannot be taken as the ground for practical action; practical action is not a realisation of intentions. On the other hand, human practical action is accompanied by series of explanations, justifications, declarations of intent, pre‑ and post-rationalisations, motivations etc. These accompanying discourses seem in one way or the other to be necessary for the actual realisation of human practical action. Following Pierre Bourdieu, it is suggested that an accompanying discourse cannot in a meaningful manner be separated from the human practical action, that practical theory should be regarded not as theory but as part of practice, and that practical theory first of all provides a common language for talking about practice and hence for reproducing a fundamentally arbitrary idea of the genesis of human practical action. Parallels are drawn to the education/formal training of semi-professionals.
Resumo:
Contemporary citizenship studies have been more concerned with the theory and philosophy of citizenship than with empirical studies. The general objective of this contribution is to broaden the understanding of how notions of citizenship are constructed and re-valued in the social world. The study draws on a qualitative analysis of political elite discourse on Romani issues in the Finnish Parliament from 1989-2003. How issues concerning the Roma are debated elucidates the dilemmas of universal rights and duties within the Nordic welfare model, and the possibilities for cultural diversity within this framework. While the Finnish parliamentary debate accentuated tolerance and the acceptance of difference as strengthening factors for Finnish social citizenship, it was not before the new millennium that the political discourse changed to increasingly stress notions of discrimination and structural inequalities in relation to the incapability to provide for a full an inclusive citizenship as regards the Romani minority.
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.