968 resultados para decomposition of polymeric precursor method (DPP)
Resumo:
PbZr0.3Ti0.7O3 (PZT) films were produced by polymeric precursor route and deposited by spin-coater technique on Pt(111)/Ti/SiO2/Si(100) substrates. The films were heat-treated using different furnaces: (a) a conventional furnace, at 700 degrees C; and (b) a domestic microwave oven, at 600 degrees C. The X-ray patterns revealed that both films are single phase and reflections were identified as belongs to the PZT phase. The intensity of these reflections showed a (111), (001) and (100) preferred orientation. Morphological and electrical characterizations showed that all samples present a rather different microstructure and both with high spontaneous polarization.
Resumo:
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present c-axis preferred orientation after annealing at 700 degrees C for 2 h in conventional furnace. All the capacitors showed good polarization fatigue characteristics at least up to 1x10(10) bipolar pulse cycles and excellent retention properties up to 1x10(4) s. We found that the polarization loss is insignificant with five write/read voltages at a waiting time of 10 000 S. Independently of the applied electric field the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. (C) 2005 American Institute of Physics.
Resumo:
Pure barium strontium titanate powder, with Ba/Sr ratio of 80/20 was prepared by the polymeric precursor method (also called Pechini process). The powder was obtained after a calcination at 800 degreesC for 8 h and characterized by XRD, IR, BET and SEM. The requirements to avoid barium carbonate as a secondary phase are presented and discussed in detail. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A 9.5/65/35 PLZT ceramic with a Pb-0.905 La-0.095 (Zr-0.65 Ti-0.35)(0.976) O-3 + 35 w% PbO formula was prepared using the Pechini method for powder preparation and two-step sintering in an oxygen atmosphere. Thr first step consisted of sintering at 1200 degrees C for 4 h with slow heating and cooling rates. The second step consisted of hot pressing at 1200 degrees C for 3 h, with slow heating and cooling rates and pressing pressures of 20 MPa (initial pressure) and 40 MPa (at sintering temperature). Investigations were made of the powder phase formation and powder morphology, i.e. The structure of sintered and hot-pressed PLZT ceramics. SEM microstructural analyses were carried out on the sintering and hot-pressing processes. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
The electrochemical quartz crystal microbalance (EQCM) technique was used to study two chemically distinct Nb2O5 electrochromic thin films (one pure and the other lithium-doped) during the lithium electroinsertion reaction. In the initial cycles, the electrode showed an irreversible mass variation greater than expected for Li+ insertion/deinsertion processes, which was attributed to the wettability effect (allied to the porous morphology) that emerged as the dominant process in apparent electrode mass changes. As the cycles progressed, the mass variation stabilized and the changes in apparent mass became reversible, showing a good correlation with the charge variations.The results generally indicated that the Li+ insertion/deinsertion process occurred more easily in the Nb2O5-doped film, which also displayed a greater capacity for Li+ insertion. However, a total mass/charge balance analysis revealed that the stoichiometry of the Li+ solid state insertion/deinsertion reaction was similar in the two electrodes under study. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, the synthesis of Nd-doped SrSnO3 by the polymeric precursor method, with calcination between 250 and 700 A degrees C is reported. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After heat treatment, the material was characterized by XRD and infrared spectroscopy. Ester and carbonate amounts were strictly related to Nd-doping. According to XRD patterns, the orthorhombic perovskite was obtained at 700 A degrees C for SrSnO3 and SrSn0.99Nd0.01O3. For Sr0.99Nd0.01SnO3, the kinetics displayed an important hole in the crystallization process, as no peak was observed in HTXRD up to 700 A degrees C, while a XRD patterns showed a crystalline material after calcination at 250 A degrees C.
Resumo:
New tungstate-based ceramic pigments, displaying ZnxNi1-xWO4 stoichiometry, were obtained at low temperature using a polymeric precursor method. The powder precursors were milled in an attritor mill in an alcoholic rnedium and heat treated for 12 h. yielding homogeneous and crystalline powder pigments. Characterization (TG/DTA, XRD, IR and colorimetry) showed that mass loss increased with increasing Zn contents. Despite the presence of secondary phases and impurities, the wolframite phase was present in all samples. IR analysis revealed bands related to Me-O and [WO6](6-) group stretching was observed. The intensity of the yellow color of the pigments increased with increasing amount of nickel. (c) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
LiNbO3 thin films were prepared from polymeric precursor method by dip coating. The precursor films, deposited on Si(111) substrates, were heat-treated from 400°C to 900°C in order to study the heat treatment influence on the crystallinity and microstructure of the final film. The X-ray diffraction patterns showed, in particular, that these films crystallize at low temperature (450°C) and present no preferential orientation. The scanning electron microscopy studies showed that the film microstructure is strongly influenced by the annealing temperature. © 1997 Trans Tech Publications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.