990 resultados para cell recovery
Resumo:
O treino competitivo envolve exercício intenso e prolongado, capaz de modular o número e actividade das células imunitárias. Quando demasiado exigente poderá induzir fadiga e aumentar a susceptibilidade a doenças. Esta dissertação apresenta três estudos desenvolvidos no âmbito da Imunologia do Exercício, considerando a análise da resposta celular imunitária sistémica aguda e crónica ao exercício aplicada em situações reais do treino competitivo de natação, controlando factores passíveis de influenciar esta resposta. Pretendeu-se avaliar a resposta imunitária a uma sessão de treino prolongada e intensa, durante as 24h de recuperação (Estudo 1) e a uma época de treino com sete meses (Estudo 2), e estudar a influência de um macrociclo de treino de quatro meses sobre a resposta imunitária à mesma sessão de treino e período de recuperação (Estudo 3), controlando sexo, fases do ciclo menstrual, maturidade, escalão, especialidade, performance, cargas de treino e sintomas respiratórios superiores (URS). A sessão de treino induziu a diminuição da vigilância imunitária adquirida imediatamente e, pelo menos nas 2h seguintes. Juvenis e seniores recuperaram totalmente 24h depois, mas não os juniores, reforçando a ideia da existência de uma janela aberta para a infecção após exercícios prolongados e intensos e sugerindo uma recuperação menos eficiente para os juniores. No período de treino mais intenso da época observou-se uma imunodepressão e maior prevalência de URS. No final da época, a imunidade inata diminuiu aparentando maior sensibilidade aos efeitos cumulativos da carga de treino, enquanto a imunidade adquirida parece ter recuperado após o taper. O macrociclo de treino atenuou a resposta imunitária à sessão de treino e aumentou o período de janela aberta às infecções (efeitos mais acentuados nos adolescentes). Os resultados evidenciam a importância de controlar alterações imunitárias durante a época competitiva, especialmente em períodos de treino intenso e quando se realizam sessões de treino intensas consecutivas com recuperações inferiores a 24h.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Resumo:
Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) < 1 μM) lead to drastic functional declines. Using human CD8(+) T cells engineered with TCRs of incremental affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
Resumo:
Historically, it has been difficult to monitor the acute impact of anticancer therapies on hematopoietic organs on a whole-body scale. Deeper understanding of the effect of treatments on bone marrow would be of great potential value in the rational design of intensive treatment regimens. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a functional radiotracer used to study cellular proliferation. It is trapped in cells in proportion to thymidine-kinase 1 enzyme expression, which is upregulated during DNA synthesis. This study investigates the potential of (18)F-FLT to monitor acute effects of chemotherapy on cellular proliferation and its recovery in bone marrow, spleen, and liver during treatment with 2 different chemotherapy regimens.
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
One century after its discovery, Chagas disease, caused by the protozoan, Trypanosoma cruzi, remains a major health problem in Latin America. Mortality and morbidity are mainly due to chronic processes that lead to dysfunction of the cardiac and digestive systems. About one third of the chronic chagasic individuals have or will develop the symptomatic forms of the disease, with cardiomyopathy being the most common chronic form. This is a progressively debilitating disease for which there are no currently available effective treatments other than heart transplantation. Like in other cardiac diseases, tissue engineering and cell therapy have been investigated in the past few years as a means of recovering the heart function lost as a consequence of chronic damage caused by the immune-mediated pathogenic mechanisms elicited in individuals with chronic chagasic cardiomyopathy. Here we review the studies of cell therapy in animal models and patients with chronic Chagas disease and the perspectives of the recovery of the heart function lost due to infection with T. cruzi.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
O. Lebeau, C. Van Delden, J. Garbino, J. Robert, F. Lamoth, J. Passweg, Y. Chalandon. Disseminated Rhizopus microsporus infection cured by salvage allogeneic hematopoietic stem cell transplantation, antifungal combination therapy, and surgical resection. Transpl Infect Dis 2010. All rights reserved Abstract: Invasive Zygomycetes infection complicating prolonged neutropenia is associated with high mortality in the absence of immune recovery. We report a patient who developed disseminated zygomycosis due to Rhizopus microsporus during induction chemotherapy for acute myeloid leukemia. Rescue allogeneic hematopoietic stem cell transplantation (allo-HSCT) was performed as her only chance of cure of this infection and to treat refractory leukemia. Posaconazole combined with liposomal amphotericin B contained the zygomycosis during prolonged neutropenia due to allo-HSCT followed by intense immunosuppression for grade IV acute graft-versus-host disease. Surgical removal of all infected sites after immune recovery, with prolonged posaconazole treatment, ultimately cured the infection. New combination antifungal therapies might sufficiently control disseminated zygomycosis to allow allo-HSCT to be performed, assuring life-saving immune recovery. Surgery appears to be necessary for definite cure of these infections.
Resumo:
BACKGROUND: Antiretroviral therapy (ART) containing tenofovir disoproxil fumarate (TDF) and didanosine (ddI) has been associated with poor immune recovery despite virologic success. This effect might be related to ddI toxicity since ddI exposure is substantially increased by TDF. OBJECTIVE: To analyze whether immune recovery during ART with TDF and ddI is ddI-dose dependent. DESIGN AND METHODS: A retrospective longitudinal analysis of immune recovery measured by the CD4 T-cell slope in 614 patients treated with ART containing TDF with or without ddI. Patients were stratified according to the tertiles of their weight-adjusted ddI dose: low dose (< 3.3 mg/kg), intermediate dose (3.3-4.1 mg/kg) and high dose (> 4.1 mg/kg). Cofactors modifying the degree of immune recovery after starting TDF-containing ART were identified by univariable and multivariable linear regression analyses. RESULTS: CD4 T-cell slopes were comparable between patients treated with TDF and a weight-adjusted ddI-dose of < 4.1 mg/kg per day (n = 143) versus TDF-without-ddI (n = 393). In the multivariable model the slopes differed by -13 CD4 T cells/mul per year [95% confidence interval (CI), -42 to 17; P = 0.40]. In contrast, patients treated with TDF and a higher ddI dose (> 4.1 mg/kg per day, n = 78) experienced a significantly impaired immune recovery (-47 CD4 T cells/microl per year; 95% CI, -82 to -12; P = 0.009). The virologic response was comparable between the different treatment groups. CONCLUSIONS: Immune recovery is impaired, when high doses of ddI (> 4.1 mg/kg) are given in combination with TDF. If the dose of ddI is adjusted to less than 4.1 mg/kg per day, immune recovery is similar to other TDF-containing ART regimen.
Resumo:
Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.
Resumo:
Starting in February 1994, 20 patients (pt) with a median age of 50 years(range 41-63) from 7 European centers have been included. Completedata were obtained in 16 patients so far. CPC were mobilized with chemo(Epirubicine 75 mg/m2 /d, 01 + 02) followed by G-CSF 5 p.gfkg/d for14 days. HD chemo consisted in 3 sequential courses of ICE regimen(UOs. 10 g/m2 , Carbo. 1200 mg/m2 and Etop. 1200 mg/m2 ) underCPC protection and G-CSF 5 p.g/kg/d. Out of the 16 pt, 12 completedfull program (3 cycles). One pt died of septic shock before receivingany ICE course. One pt died during the first ICE of renal insufficiency.Two pt had only 2 courses because of toxicity. Among the 16 pt, responserate (RR) was: 7 CR, 6 PR, 1 PO; 3 pt are not evaluable dueto early withdrawal (overall RR: 13/16 = 81 %). Thirty-nine cycles ofHD chemo were given with a median hematological recovery of 9 days(range 7-12) until neutro. counts> 1.0 x 109 /1 and 9 days (range 717)until thrombo. > 20 x 109 /1. No cumulative, hematological toxicitywas seen. Accrual of patients is still ongoing and updated results will bepresented.
Resumo:
PURPOSE: This study aimed to evaluate the efficacy and toxicity of radioimmunotherapy (RIT) in recurrent lymphoma after hematopoietic stem cell transplantation (HSCT). METHODS: We reviewed 9 patients, 7 with follicular lymphoma (DLBCL), 1 with mantle cell lymphoma (MCL), and 1 with diffuse large B-cell lymphoma treated with Y-ibritumomab tiuxetan 6 to 140 months after HSCT. Patients underwent In-ibritumomab scintigraphy and were treated 1 week later with standard 14.8 MBq/kg (n = 4) or 11.1 MBq/kg (n = 4) Y-ibritumomab. One patient who had allo-HSCT had reduced activity (70%) treatment. RESULTS: Among the 7 FL patients, we observed complete response (CR) in 2 patients and partial response (PR) in 5 patients. One patient with CR relapsed after 15 months; the other persisted 43.5 months after RIT. Of 5 patients with PR, 3 relapsed between 13 and 17 months; 1 persisted until unrelated death at 11.5 months. The fifth patient with PR received adoptive immunotherapy and improved to metabolic (FDG-PET) CR that persists 45.5 and 41 months after Y-ibritumomab and immunotherapy, respectively. Patients with MCL and DLBCL progressed or experienced stabilization (5 months), respectively. Six patients had grade 1 to 3 bone marrow (BM) toxicity and recovered within 3 months. Three patients having Y-ibritumomab 6, 14, and 24 months after HSCT experienced grade 4 BM toxicity. One of them (RIT 24 months after HSCT) recovered after 3 months, another delayed after 9 months, and the third patient only partially recovered, eventually developed myelodysplasia, and was allografted. CONCLUSIONS: Radioimmunotherapy after HSCT is an effective rescue therapy in FL. However, BM toxicity may be important; 3 of 8 patients treated with standard Y-ibritumomab activity experienced grade 4 BM toxicity, with incomplete recovery 3 months after RIT in 2 patients, both treated early (6 and 14 months) after HSCT.
Resumo:
Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.
Resumo:
Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.