974 resultados para Whether magnetoresistance
Resumo:
The magnetotransport properties of a nominally undoped InGaN thin film grown by metal-organic chemical vapor deposition were investigated. Resistivity was measured under a magnetic field up to 5 T over the temperature range of 3 to 298 K. The film exhibits a negative magnetoresistance at low temperatures. Its magnitude decreases with increasing temperature, and turns to be positive for temperatures above 100 K. The negative component was described by a model proposed by Khosla and Fischer for spin scattering of carriers in an impurity band. The positive part was attributed to the effect of Lorentz force on the carrier motion. Agreement between the model and the data is presented.
Resumo:
Polycrystalline Sr2FeMoO6 compounds with most vacancies at normal Fe sites were fabricated through Mo hole doping; its effect is similar to Fe3+ by our estimation. Sharp increase of magnetoconductance at low field was evidence of spin-polarized tunneling between the grains. The room temperature low-field magnetoresistivity at optimal doping x=0.03 is 8.5% in 3000 Oe and increases to 11.4% in 1 T associated with soft magnetic behaviors; furthermore it exhibits a ferromagnetic Curie temperature of 450 K, connected with hole doping effect. The improved magnetoresistivity behavior was related to Curie temperature.
Resumo:
The electronic structure of CaCu3Mn4O12 and LaCu3Mn4O12 was investigated using a full-potential linearized augmented plane wave method within the Generalized Gradient Approximation (GGA). The ferrimagnetic and ferromagnetic states in these two compounds were investigated and the calculated spin magnetic moments were found to be close to the available experimental values. Calculations of spin polarization for these two oxides show that the ferrimagnetic configurations are the energetically favored ground state, which is consistent with experimental observation. The calculations predict that CaCu3Mn4O12 is a semiconductor and that LaCu3Mn4O12 is a half-metallic material. Furthermore, the relevance of these different electronic structures to the magnetoresistance is discussed.
Resumo:
The electrical, magnetic and transport properties of Zn doped polycrystalline samples of Sr2Fe1-xZnxMoO6 ( x = 0, 0.05, 0.15 and 0.25) with the double perovskite structure have been investigated. The subtle replacement of Fe3+ ions by Zn2+ ions facilitates the formation of a more ordered structure, while further substitution leads to disordered structure because of the presence of a striped phase. Analysis of the x-ray powder diffraction patterns based on Rietveld analysis indicates that the replacement of Fe3+ by Zn2+ ions favours the formation of Mo6+ ions. The spin-glass behaviour can be explained on the basis of the competition between the antiferromagnetic superexchange and the ferromagnetic double-exchange interaction. The low-field magnetoresistance was moderately enhanced at x = 0.05, and its origin was found to be the competition between the decrease of the concentration of the itinerant electrons and the weaker antiferromagnetic superexchange in the antiphase boundaries. An almost linear negative magnetoresistance in moderate field has been observed for x = 0.25. A possible double-exchange mechanism is proposed for elucidating the observations; it also suggests a coexistence of (Fe3+, Mo5+) and (Zn2+, Mo6+) valence pairs.
Resumo:
Objective: We explored whether readers can understand key messages without having to read the full review, and if there were differences in understanding between various types of summary.
Design: A randomised experiment of review summaries which compared understanding of a key outcome.
Participants: Members of university staff (n = 36).
Setting: Universities on the island of Ireland.
Method: The Cochrane Review chosen examines the health impacts of the use of electric fans during heat waves. Participants were asked their expectation of the effect these would have on mortality. They were then randomly assigned a summary of the review (i.e. abstract, plain language summary, podcast or podcast transcription) and asked to spend a short time reading/listening to the summary. After this they were again asked about the effects of electric fans on mortality and to indicate if they would want to read the full Review.
Main outcome measure: Correct identification of a key review outcome.
Results: Just over half (53%) of the participants identified its key message on mortality after engaging with their summary. The figures were 33% for the abstract group, 50% for both the plain language and transcript groups and 78% for the podcast group.
Conclusions: The differences between the groups were not statistically significant but suggest that the audio summary might improve knowledge transfer compared to written summaries. These findings should be explored further using a larger sample size and with other reviews.
Resumo:
The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.
Resumo:
The main purpose of this thesis is to study properties of La2/3Cai/3Mn03, both polycrystalline
ceramics and thin films. This material has striking related electrical and
magnetic properties. Thin films show colossal negative magnetoresistance (CMR) near
transition from an insulating to a metallic state accompanied closely by transition from
a paramagnetic to a ferromagnetic state. The double exchange mechanism (DE) and the
Jahn-Teller deformations play an important role in CMR effect. Applied pressure has a
very similar effect as does an applied magnetic field, except, at low temperatures (T
Resumo:
Adam Seybet, Chairman.
Resumo:
The Union Publishing Co.'s farmers' and business directory for the counties of Haldimand, Lincoln, Welland & Wentworth.
Resumo:
This study examines the adaptability of the Finland model to meet the educational disparities currently observed in the education system in Ontario, Canada. A literature review and a database highlight key characteristics of the Finland model. From this information, Finland and Ontario’s systems are found to be similar in the areas of systemic structure and educational philosophies, and international testing and performance standards. The systems are found to be different in the areas of geography and demographics, social perceptions and attitudes towards education, school system structure, teaching philosophies, teacher education and professional status, and standardized and high-stakes testing. Discussion regarding use of Finnish philosophies to meet Ontario’s needs in the following areas takes place: social perceptions and attitudes towards education, our teaching philosophies, our teacher education and professional status, and our use of high-stakes and standardized testing. Opportunities for future research are also discussed and the major research paper includes a workshop and survey.
Resumo:
The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.
Resumo:
We have observed a type of giant magnetoresistance (GMR) in magnetic granular Co10Cu90 alloys. The asymmetric GMR depends strongly on the size of magnetic Co particles, which exhibit superparamagnetic behavior at given measured temperature. The asymmetric GMR points to a metastable state that develops when the sample is field-cooled, which is lost after recycling. We propose that high-field cooling produces more effective parallel alignment of small unblocked Co particle moments and interfacial magnetizations, which contributes to the further decrease of the resistance in comparison with the samples zero-field-cooled, and then applied to the same field.