846 resultados para Vegetable cellulose
Resumo:
El zapallo Spaghetti, cultivo vigoroso de clima templado, constituye una alternativa productiva interesante y novedosa para nuestro país. El objetivo de este estudio fue evaluar el efecto del mulching y de la densidad sobre el rendimiento total, el peso medio y el calibre de los frutos. El estudio se llevó a cabo en Azul sobre un suelo Argiudol típico en camellones de 0,80 m de ancho con diferentes densidades de siembra. Se realizó una fertilización profunda en bandas de 0,80 m con fosfato diamónico, controlando las malezas en forma química, manual y mecánicamente, y las plagas haciendo aplicaciones preventivas de insecticidas y fungicidas. La siembra manual se efectuó el 2 de noviembre y los tratamientos fueron: densidades de siembra de 20, 15, 10 y 5 mil pl/ha (D1, D2, D3 y D4), con y sin mulching. Se trabajó con 32 parcelas y cada una tenía tres surcos de seis metros de longitud separados entre si por 2m. Se realizaron cuatro cosechas al llegar a la madurez completa (15/2, 29/2, 7/3 y 3/4). Los calibres evaluados fueron: (1) 2,2 kg, (2) 1,7 kg; (3) 1,3 kg y (4) 0,8 kg / fruto. Para el análisis de los datos se utilizó un modelo de bloques completamente aleatorizados con parcelas sub-divididas. En la parcela principal se evaluó el efecto del mulching, en la subparcela la densidad y la interacción de mulching por densidad, y en la subsubparcelas las diferentes cosechas. La cosecha total mostró diferencias significativas para el efecto del mulching, obteniéndose 71,90 t/ha (a) (con mulching) y 62,02 t/ha (b) (sin mulching); para cada densidad se detectaron diferencias significativas para el efecto mulching: D1: 84,45 t/ha (a), D2: 76,47 t/ha (ab); D3: 65,14 t/ha (b) y D4: 61,55 t/ha (b). Se observaron diferencias significativas en el número de frutos cosechados: con mulching (51.667 frutos/ha) y sin mulching (44.167 frutos/ha), y para las diferentes densidades: D1: 54.167 (a); D2: 50.000 (ab); D3: 47.700 (ab) y D4: 40.833 (b) t/ha. La composición de calibres de frutos cosechados fue el mismo para todos los tratamientos y cosechas.
Resumo:
A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as crosslinker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.
Resumo:
Four groups of brackishwater catfish were fed four diets: N.F. (NIOMR formula 1 feed), A. B. and C. for seven weeks. Feeds N.F., A., B and C. contained 1.21% fish oil + 5.59% vegetable oil; 1.21% fish oil + 7.39% vegetable oil; 1.21% fish oil + 9.09% vegetable oil; 1.21% fish oil + 10.89% vegetable oil respectively. Results of feeding trial showed that growth was best in the group fed diets containing 10.89% vegetable oil and least in those containing 9.09% vegetable oil
Resumo:
The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.
It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.
Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.
Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.
The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.
Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.
The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.
It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.
Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.
Resumo:
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.
Resumo:
An outline is given of procedures to take in order to adopt an integrated rice-fish-vegetable farming system in India. Vegetables, which are cultivated in the dikes of the system, may include Luffa acutangula, Vigna unguiculata and Phaseolus vulgaris . When the water depth of the field rises to 30-40 cm, fish fingerlings (Puntius javanicus, Cyprinus carpio and Labeo rohita ) and prawn juveniles (Macrobranchium rosenbergii ) may be stocked. The advantages of such a system are listed and include year round employment opportunities for the farm family and improved farm family income and nutrition.
Resumo:
The hydrographic conditions prevailing in an estuarine system along the southwest coast of India are described. The nature of destruction of timber in these backwaters has been examined in detail which revealed the existence of 8 species of shipworms, 2 species each of pholads and isopods. The shipworms are represented by Dicyathifer manni, Lyrodus pedicellatus, Teredo furcifera, T. clappi, Nausitora dunlopei, Bankia carinata, B. campanellata; the pholads by Martesia striata and M. (Purticoma) nairi; and the isopods by Sphaeroma terebrans and S. annandalei. The incidence and relative abundance of these pests are discussed in relation to the salinity profile of the estuary.
Resumo:
The results of two sets of experiments on mono-culture of grass carp (Ctenopharyngodon idella) and mixed culture of carps (grass carp 50 : catla 20 : rohu 15 : mrigal 15) fed exclusively with vegetable leaves are reported. The experiments were conducted with two replicates each in 0.02 ha ponds of Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara during 1991-93. Monoculture of grass carp stocked at 1000/ha demonstrated an average net production of 21.0 kg/ 0.02 ha/8 months (1501 kg/ha/yr). Mixed culture of carps stocked at 5000 /ha recorded an average net production of 22.5 kg/0.02 ha/8 months (1903.7 kg/ha/yr). Field studies revealed that water bind weed (Ipomoea aquatica) is the most preferred feed of grass carp amongst vegetable leaves followed by amaranths (Amaranthus gangeticus and Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis) and cabbage (Brassica oleracia var. capitata) leaves. Through selection of highly productive leaf vegetables and suitable crop planning on fallow fish pond dykes, round the year feeding programme of grass carp has been explored. Recycling of sewage effluent for vegetable production and utilisation of vegetable leaves for fish production is considered an ideal way of integrated resource management for low cost production.
Resumo:
A brief account is given of experiments undertaken rearing Penaeus monodon larvae fed on diatom (Chaetoceros calcitran) and fermented vegetable trash, which included fruits and their peels, vegetables and rice. The possible use of high protein content trash materials as a feed substitute is examined briefly.
Resumo:
Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.
Resumo:
Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.