935 resultados para User interfaces
Resumo:
The rapid growth of services available on the Internet and exploited through ever globalizing business networks poses new challenges for service interoperability. New services, from consumer “apps”, enterprise suites, platform and infrastructure resources, are vying for demand with quickly evolving and overlapping capabilities, and shorter cycles of extending service access from user interfaces to software interfaces. Services, drawn from a wider global setting, are subject to greater change and heterogeneity, demanding new requirements for structural and behavioral interface adaptation. In this paper, we analyze service interoperability scenarios in global business networks, and propose new patterns for service interactions, above those proposed over the last 10 years through the development of Web service standards and process choreography languages. By contrast, we reduce assumptions of design-time knowledge required to adapt services, giving way to run-time mismatch resolutions, extend the focus from bilateral to multilateral messaging interactions, and propose declarative ways in which services and interactions take part in long-running conversations via the explicit use of state.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
Situated on Youtube, and shown in various locations. In this video we show a 3D mock up of a personal house purchasing process. A path traversal metaphor is used to give a sense of progression along the process stages. The intention is to be able to use console devices like an Xbox to consume business processes. This is so businesses can expose their internal processes to consumers using sophisticated user interfaces. The demonstrator was developed using Microsoft XNA, with assistance from the Suncorp Bank and the Smart Services CRC. More information at: www.bpmve.org
Resumo:
User interfaces for source code editing are a crucial component in any software development environment, and in many editors visual annotations (overlaid on the textual source code) are used to provide important contextual information to the programmer. This paper focuses on the real-time programming activity of ‘cyberphysical’ programming, and considers the type of visual annotations which may be helpful in this programming context.
Resumo:
Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2013 evaluation campaign, which consisted of four activities addressing three themes: searching professional and user generated data (Social Book Search track); searching structured or semantic data (Linked Data track); and focused retrieval (Snippet Retrieval and Tweet Contextualization tracks). INEX 2013 was an exciting year for INEX in which we consolidated the collaboration with (other activities in) CLEF and for the second time ran our workshop as part of the CLEF labs in order to facilitate knowledge transfer between the evaluation forums. This paper gives an overview of all the INEX 2013 tracks, their aims and task, the built test-collections, and gives an initial analysis of the results
Resumo:
This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.
Resumo:
Designing systems for multiple stakeholders requires frequent collaboration with multiple stakeholders from the start. In many cases at least some stakeholders lack a professional habit of formal modeling. We report observations from student design teams as well as two case studies, respectively of a prototype for supporting creative communication to design objects, and of stakeholder-involvement in early design. In all observations and case studies we found that non-formal techniques supported strong collaboration resulting in deep understanding of early design ideas, of their value and of the feasibility of solutions.
Resumo:
In this paper we describe the use and evaluation of CubIT, a multi-user, very large-scale presentation and collaboration framework. CubIT is installed at the Queensland University of Technology’s (QUT) Cube facility. The “Cube” is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, use and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT are implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. The evaluation reveals issues around the public use and functional scope of the system.
Resumo:
We explore relationships between habits and technology interaction by reporting on older people's experience of the Kinect for Xbox. We contribute to theoretical and empirical understandings of habits in the use of technology to inform understanding of the habitual qualities of our interactions with computing technologies, particularly systems exploiting natural user interfaces. We situate ideas of habit in relation to user experience and usefulness in interaction design, and draw on critical approaches to the concept of habit from cultural theory to understand the embedded, embodied, and situated contexts in our interactions with technologies. We argue that understanding technology habits as a process of reciprocal habituation in which people and technologies adapt to each other over time through design, adoption, and appropriation offers opportunities for research on user experience and interaction design within human-computer interaction, especially as newer gestural and motion control interfaces promise to reshape the ways in which we interact with computers.
Resumo:
Tangible User Interfaces increasingly gain attention for their supportive potential in cognitive processes. More and more often the terms e-Learning and tangible interaction are been referred to in one word as Tangible e-Learning. This paper gives a general overview on the topic in reference to development history, research and effectiveness. It explains how epistemology, together with its idea that physicality enhances learning and that the cognitive process can happen in expressive or exploratory manner, motivates the emerging of TUIs and acts as a basis for the classification of Tangible e-Learning Systems. The benefits of TUIs in comparison to classical GUIs in terms of their contribution to the learning process, engagement, enjoyment and collaboration are empirically proven, although poorly. Nevertheless, it is not known whether TUIs have stronger potential than common Physical User Interfaces that are not electronically augmented. Still, TUIs that support learning have a strong potential to be integrated into real world scenarios.
Resumo:
Young males are over-represented in road crashes. Part of the problem is their proneness to boredom, a hardwired personality factor that can lead to risky driving. This paper presents a theoretical understanding of boredom in the driving context and demonstrates convincing arguments to investigate the role of boredom further. Specifically, this paper calls for the design of innovative technologies and applications that make safe driving more pleasurable and stimulating for young males, e.g., by applying gamification techniques. We propose two design concepts through the following questions: A. Can the simulation of risky driving reduce actual risky driving? B. Can the replacement of risky driving stimuli with alternative stimuli reduce risky driving? We argue that considering these questions in the future design of automotive user-interfaces and personal ubiquitous computing devices could effectively reduce risky driving behaviours among young males.
Resumo:
In this paper we describe CubIT, a multi-user presentation and collaboration system installed at the Queensland University of Technology’s (QUT) Cube facility. The ‘Cube’ is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, implementation and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT were implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. Each of these interfaces plays a different role and offers different interaction mechanisms. Together they support a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system. The results of our evaluation study showed that CubIT was successfully used for a variety of tasks, and highlighted challenges with regards to user expectations regarding functionality as well as issues arising from public use.
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
For people with intellectual disabilities, there are significant barriers to inclusion in socially cooperative endeavors. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial, and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.