935 resultados para Topologically Massive Yang-Mills


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static soliton solutions with non-zero Hopf topological charges to a theory which is the extended Skyrme-Faddeev model with a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled nonlinear partial differential equations in two variables by a successive over-relaxation method. We construct numerical solutions with the Hopf charge up to 4. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the spectrum of the lowest screening masses for Yang-Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called ""variational"" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigamos o comportamento infravermelho do propagdor do glúon,no calibre de Ladau, em três dimensões (2+1) para teoria Yang-Mills SU (2) (YM23 )usando simulações em redes euclidianas de grande volume(403, 803, 1403). Obtemos indicações bastante fortes de que esse propagador tende a valor infinito para momentum nulo,decrescendo, a partir de ~350 MeV, com , expoente crítico κ ~ 0.6. Comparações com predições analíticas não-perturbativas mostram boa concordância e sugerem existência de pólos imaginários no propagador.Obtemos clara evidência de violação em YM23, condição suficiente para o confinamento de cor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teorias de calibre formuladas em um espaço-tempo não cumulativo têm sido intensamente estudadas nos últimos anos. O interesse nesse assunto possui motivações provenientes da teoria de cordas. Uma das propriedades mais notáveis das teorias das não-cumulativas consiste de uma estrutura não usual de divergências,a chamada mistura UV/IR, que pode levar ao aparecimento de divergências infravermelhas não integráveis. A eliminação de tais divergências é crucial já que elas podem provocar o colapso da série pertubativa. Modelos não- cumulativos supersimétricos tem um lugar proeminente entre as teorias de campo fisicamente interessantes, uma vez que a supersimetria favorece o cancelamento das divergências perigosas. Eles são os melhores candidatos num programa para definir teorias de campo não-cumulativas consistentes. Neste trabalho investigamos a QED e Yang-Mills não-cumulativos supersimétricos em três dimensões usando o formalismo de supercampos. Para o caso abeliano provamos que a mistura UV/IR não é fonte de divergências infravermelhas não integráveis. Além disso, o modelo resulta ser finito na aproximação de um laço. O mesmo se aplica ao caso abeliano porém apenas na representação fundamental do grupo de calibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new families of T-dual integrable models of dyonic type are constructed. They represent specific A(n)((1)) singular non-abelian affine Toda models having U(1) global symmetry. Their I-soliton spectrum contains both neutral and U(I)-charged topological solitons sharing the main properties of 4-dimensional Yang-Mills-Higgs monopoles and dyons. The semiclassical quantization of these solutions as well as the exact counterterms and the coupling constant renormalization are studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study Compton scattering in the noncommutative (NC) counterpart of QED. Interactions in NC QED have momentum dependent phase factors and the gauge fields have Yang-Mills type couplings; this modifies the cross sections and they are different from the commuting standard model. Collider signals of noncommutative space-time are studied at the Next Linear Collider (NLC) operating in the e gamma mode. Results for different polarized cases are presented and it is shown that the Compton process can probe the noncommutative scale in the range of 1-2.5 TeV for typical proposed NLC energies.